DIP第三章作业鉴于LoG算法在历史中的地位,进行较深入的实验研究。探讨不同σ对LoG算法的影响。图像Chapter3_1.pgm计算公式(*表卷积)见(1) 1)取σ =1.2然后求零交叉的结果2)取σ =2.8的然后求零交叉的结果3)讨论和结论:零交叉对σ的依赖性软件平台Python3.6 + OpenCV4.4.0LoG原理LoG边缘检测算子是David Court
转载
2024-07-31 17:22:08
68阅读
图象边缘检测中边界闭合性的分析与探讨
摘 要 在图象边缘检测中往往要求所检测到的边缘具有封闭特性,本文详细地分析了目前常用的两种算法:哈夫变换和Canny边缘检测算法,最后,探讨边缘算子应满足的准则。
关键词 边缘检测;闭合性;哈夫变换;Canny算子
1引言
转载
2024-08-27 14:52:01
90阅读
最近在优化一个Python项目,里面包含很多set,list,dict等操作,代码行数2000多行,每次运行耗时都在30-50ms,本以为是Python语言的动态解析特性导致运行性能太低,便尝试使用JIT工具进行优化,折腾一番之后,性能只提升20%,远没有官方介绍的6倍之多,反复查看代码,想到了IO耗时的问题,而是怀疑log输出到控制台耗时是否是罪魁祸首,实验下来发现的确如此。实验内容:分别对比,
转载
2024-05-14 15:45:45
39阅读
利用图像强度二阶导数的零交叉点来求边缘点的算法对噪声十分敏感,所以在边缘增强前滤除噪声。为此,马尔(Marr)和希尔得勒斯(Hildreth)根据人类视觉特性提出了一种边缘检测的方法,该方法将高斯滤波和拉普拉斯检测算子结合在一起进行边缘检测的方法,故称为Log(Laplacianof Gassian )算法。也称之为拉普拉斯高斯算法。该算法的主要思路和步骤如下:
原创
2014-03-19 21:39:00
865阅读
一、sobel算子边缘检测理论 sobel算子是广泛应用的微分算子之一,可以计算图像处理中的边缘检测,计算图像的灰度地图。在技术上,它是一个离散的一阶差分算子,用来计算图像亮度函数的一阶梯度之近似值。在图像的任何一点使用此算子,将会产生该点对应的梯度矢量或是其法矢量原理就是基于图像的卷积来实现在水平方向与垂直方向检测对于方向上的边缘。 这个实验在有学过上述图像矩阵中值运算的基础上来做并不难,把中值
转载
2024-07-14 09:35:08
108阅读
1.边缘边缘的一阶导数在图像由暗变亮的突变位置有一个正的峰值,而在图像由亮变暗的位置有一负的峰值,而在其他位置都为0。这表明可用一阶导数的幅度值来检测边缘的存在,幅度峰值对应的一般就是边缘的位置,峰值的正或负就表示边缘处是由暗变亮还是由亮变暗。同理,可用二阶导数的过0点检测图像中边缘的存在。 2.边缘检测算子 1.Roberts算子Roberts梯度就是采用对角方向相邻两像素
转载
2023-06-25 10:49:52
1172阅读
索贝尔算子(Sobeloperator)主要用于获得数字图像的一阶梯度,是一种离散性差分算子。它是prewitt算子的改进形式,改进之处在于sobel算子认为,邻域的像素对当前像素产生的影响不是等价的,所以距离不同的像素具有不同的权值,对算子结果产生的影响也不同。一般来说,距离越远,产生的影响越小。 在边缘检测中,常用的一种模板是Sobel 算子。Sobel 算子有两个,一个是检测水平边缘的 ;
转载
2023-06-07 19:16:40
202阅读
一、边缘的重要性 边缘在图像处理中的重要性不言而喻。当前AI最高端技术莫过于深度学习,而图像方面的深度学习建模所需要的特征,很多是从边缘为起点,不断向上构成更高层次的特征描述。我们来看下例子,此例摘自zouxy09关于深度学习的一篇文章( Deep Learning(深度学习)学习笔记整理系列):
转载
2024-08-07 10:41:18
376阅读
# 如何实现边缘提取算子 opencv python
## 1. 整体流程
| 步骤 | 操作 |
| ---- | ---- |
| 1 | 导入所需的库 |
| 2 | 读取图像 |
| 3 | 转换为灰度图 |
| 4 | 应用边缘提取算子 |
| 5 | 显示结果 |
## 2. 具体步骤及代码
### 步骤1:导入所需的库
```python
import cv2
import
原创
2024-02-22 05:44:23
48阅读
# Krisch算子边缘检测
边缘检测是计算机视觉中常用的一种图像处理技术,它能够检测图像中明显的边缘或轮廓。Krisch算子是一种常用的边缘检测方法之一,它通过对图像进行卷积操作来寻找边缘。
## Krisch算子原理
Krisch算子是基于图像的灰度值变化来检测边缘的。它使用3x3的卷积核对图像进行卷积操作,计算每个像素点的梯度幅值和方向。Krisch算子的卷积核如下所示:
```
-
原创
2023-08-14 08:00:19
127阅读
一、 实验目的(1) 通过实验分析不同尺度下LOG和Canny边缘提取算子的性能。(2) 研究这两种边缘提取方法在不同参数下的边缘提取能力。(3) 使用不同的滤波尺度和添加噪声能量(噪声水平),通过与无噪声图像对比,选择最能说明自己结论的滤波尺度和噪声水平,并做出分析说明。二、 实验原理边缘的含义:在数字图像中,边缘是指图像局部变化最显著的部分,边缘主要存在于目标与目标,目标与背景之间
1.Roberts算子 基于交叉差分的梯度算法,通过局部差分计算检测边缘线条。 常用来处理具有陡峭的低噪声图像,当图像边缘接近于正45度或负45度时,该算法处理效果更理想。 其缺点是对边缘的定位不太准确,提取的边缘线条较粗。 2.Prewitt算子 
转载
2023-12-12 15:34:52
128阅读
不同图像灰度不同,边界处一般会有明显的边缘,利用此特征可以分割图像。需要说明的是:边缘和物体间的边界并不等同,边缘指的是图像中像素的值有突变的地方,而物体间的边界指的是现实场景中的存在于物体之间的边界。有可能有边缘的地方并非边界,也有可能边界的地方并无边缘,因为现实世界中的物体是三维的,而图像只具有二维信息,从三维到二维的投影成像不可避免的会丢失一部分信息;另外,成像过程中的光照和噪声也是不可避免
转载
2024-01-31 01:02:42
56阅读
Marr算子: Laplacian of a Gaussian(LOG)Marr算子是在Laplacian算子的基础上实现的,它得益于对人的视觉机理的研究,有一定的生物学和生理学意义。由于Laplacian算子对噪声比较敏感,为了减少噪声影响,提出了将高斯滤 波和拉普拉斯检测算子结合在一起进行边缘检测的方法:先对图像进行平滑,然后再用Laplacian算子检测边缘。平滑函数应能反映不同远近的周围点
转载
2023-10-20 16:38:05
58阅读
在MATLAB中,可以调用库函数BW=edge(I,'canny',thresh)实现canny算子的边缘检测。 canny算子的边缘提取主要分四步进行:(1)去噪声(2)计算梯度值与方向角(3)非最大值抑制(4)阈值化相关的visual c++程序如下:void CFunction::CreatGauss(double sigma, double **pdKernel, int *
转载
2023-11-12 10:58:08
80阅读
10.1 Python图像处理之边缘算子-Sobel算子、Roberts算子、拉普拉斯算子、Canny算子、Prewitt算子、高斯拉普拉斯算子 文章目录10.1 Python图像处理之边缘算子-Sobel算子、Roberts算子、拉普拉斯算子、Canny算子、Prewitt算子、高斯拉普拉斯算子1 算法原理1.1 Sobel 算子1.2 Roberts 算子1.3 拉普拉斯(Laplacian)
转载
2024-06-09 11:34:50
211阅读
检测阶跃边缘的基本思想是在图像中找出具有局部最大梯度幅值的像素点。图像边缘检测必须满足两个条件:一是必须能有效地抑制噪声;二是必须尽量精确确定边缘的位置。既要提高边缘检测算子对边缘的敏感性,同时也提高了对噪声的敏感。 1.Canny边缘检测基本原理: (1)具有既能滤去噪声又保持边缘特性的边缘检测最优滤波器,其采
原创
2014-03-19 21:43:00
2253阅读
拉普拉斯算子一种二阶边缘检测算子,它是一个线性的、移不变算子。是对二维函数进行运算的二阶导数算子,对一个连续函数f (x, y)它在图像中的位置(x, y),拉普拉斯值定义为: Laplacian算子利用二阶导数信息,具有各向同性,即与坐标轴方向无关,坐标轴旋转后梯度结果不变。使得图像经过二阶微分后,在边缘处产生一个陡峭的零交叉点,根据这个对零交叉点判断边缘。其4邻
原创
2014-03-19 21:31:00
3248阅读
Prewitt边缘算子的卷积和如下图所示,图像中的每个像素都用这两个核做卷积,取最大值作为输出,也产生一幅边缘幅度图像。 Prewitt算子在一个方向求微分,而在另一个方向求平均,因而对噪声相对不敏感,有抑制噪声作用。但是像素平均相当于对图像的低通滤波,所以Prewitt算子对边缘的定位不如Roberts算子。 I=imread('lena.bmp'); I=
原创
2014-03-19 21:25:00
2184阅读
Sobel边缘算子的卷积和如图2.2所示,图像中的每个像素都用这两个核做卷积。这两个核分别对垂直边缘和水平边缘响应最大,两个卷积的最大值作为该点的输出位。运算结果是一幅边缘幅度图像。 Sobel算子认为邻域的像素对当前像素产生的影响不是等价的,所以距离不同的像素具有不同的权值,对算子结果产生的影响也不同。一般来说,距离越大,产生的影响越小。
原创
2014-03-19 21:21:00
1002阅读