总结多数机器学习算法框架,可发现组成部分:1. 明确样本输入与输出; 2. 构建待学习模型; 3. 确定损失函数/目标函数(平方损失函数等); 4. 明确模型目标(最小化、最大化); 5. 求解方法(最小二乘法、极大似然估计、牛顿迭代法、拉格朗日等); 6. 求解结果形式; 其中,由于不同的模型方法,涉及的损失函数不尽相同,部分涉及参数的引进与构建。此时,求解过程多半需要参数优化与交叉
前面我们知道对数函数和对数函数的一些基本性质,也许你会问,为什么要引入对数函数?而且还是一个基本初等函数?这就要从logit变换说起。
原创 2021-06-04 14:59:37
944阅读
logit变换到logistic模型​​logit变换​​​​几率​​​​logistic模型​​前面我们知道对数函数和对数函数的一些基本性质,也许你会问,为什么要引入对数函数?而且还是一个基本初等函数?这就要从logit变换说起。logit变换我们在研究某一结果(y)与一系列因素 (
原创 2022-04-08 17:51:45
974阅读
有序多分类Logistic回归模型 一、模型适用条件 研究变量Y是有序的而且是多分类的,常见的如生活满意度,答案包括五个:很不满意;不太满意;一般;比较满意;非常满意。或者三个:满意;一般;不满意。关于主观幸福感的研究,答案包括:比较幸福;一般;比较不幸福。 具体的研究中,有些研究把上述五分类或者三分类变量合并成二分类,使用二项Logistic回归模型,这样的研究比较常见。 二、具体操作 有序多分
快速傅立叶变换的意义及应用 1、为什么要进行傅里叶变换,其物理意义是什么? 傅立叶变换是数字信号处理领域一种很重要的算法。要知道傅立叶变换算法的意义,首先要了解傅立叶原理的意义。傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位
DCT变换的基本思路是将图像分解为8×8的子块或16×16的子块,并对每一个子块进行单独的DCT变换,然后对变换结果进行量化、编码。随着子块尺寸的增加,算法的复杂度急剧上升,因此,实用中通常采用8×8的子块进行变换,但采用较大的子块可以明显减少图像分块效应。在图像压缩中,一般把图像分解为8×8的子块,然后对每一个子块进行DCT变换、量化,并对量化后的数据进行Huffman编码。DCT变换可以消除图
一、离散选择模型莎士比亚曾经说过:To be, or not to be, that is the question,这就是典型的离散选择模型。如果被解释变量时离散的,而非连续的,称为“离散选择模型”。例如,消费者在购买汽车的时候通常会比较几个不同的品牌,如福特、本田、大众等。如果将消费者选择福特汽车记为Y=1,选择本田汽车记为Y=2,选择大众汽车记为Y=3;那么在研究消费者选择何种汽车品牌的时候
01 生活中,我们经常遇到以下问题如何预测一个用户是否购买某件商品?如何预测用户流失概率?如何判断用户的性别?如何预测用户是否点击某商品?如何判断一天评论是正面还是负面?预测用户是否点击某个广告如何预测肿瘤是否是恶性的等等02 如何选择算法模型解决问题?现实中的这些问题可以归类为分类问题 或者是二分类问题。逻辑回归是为了就是解决这类问题。根据一些已知的训练集训练好模型,再对新的数据进行预测属于哪个
转载 2023-12-12 12:40:48
247阅读
算法竞赛入门笔记4Task4 模型调参逻辑回归模型树模型集成模型模型对比与性能评估总结 Task4 模型调参逻辑回归模型理解逻辑回归模型 逻辑回归的原理:逻辑回归模型的应用 逻辑回归模型常用于二分类问题。也用与文本分类、数据挖掘,疾病自动诊断,经济预测等领域。逻辑回归的优缺点优点 训练速度较快,分类的时候,计算量仅仅只和特征的数目相关;简单易理解,模型的可解释性非常好,从特征的权重可以
转载 2024-08-12 14:05:31
123阅读
一、问题描述    前面我们讨论了使用线性模型进行回归学习,但是要做分类任务怎么办?只需要找一个单调可微函数将任务分类的真实标记 y 与线性回归模型的预测值联系起来。    考虑二分类任务,其输出应该是 y 属于[0, 1]。而线性回归模型产生的预测值 z = wx+b是实值。于是我们考虑将 z 转换到 0 / 1值。二、对数几率回归&n
转载 2024-03-21 10:06:02
277阅读
# 使用Python实现Logit转换 在数据分析和统计建模中,Logit转换是一种常用的技术,尤其在处理二分类问题时。Logit转换可以将概率值(0到1之间)转换为对数几率(从负无穷到正无穷)。在本文中,我将指导你如何在Python中实现Logit转换,并为你详细解释每一步的具体操作。 ## 整体流程 转换的整个流程可以分为以下几个步骤: | 步骤 | 描述
原创 2024-10-10 04:56:10
122阅读
# Python 面板 Logit 分析入门 ## 概述 在数据分析中,我们常常需要分析二元分类变量的关系。面板数据(Panel Data)常常用于经济学和社会科学研究,它结合了时间序列和截面数据的优点。Python 为数据分析提供了强大的库,其中 `statsmodels` 是进行面板 Logit 回归分析的一个重要工具。 本篇文章将带你了解如何使用 Python 进行面板 Logit
原创 7月前
59阅读
今天,我们'多项响应模型研究小组'给计量经济圈的圈友引荐一种关于“多项相应模型”的方法。我们在微观计量中经常会碰到logit, probit,ordered logit(probit),multilogit(probit)等,他们分别对应着二值选择、有序选择和多项选择的问题处理。关于这种日常生活中经常出现的选择问题,McFadden教授对此做出了重大原创性贡献,从而也让他与Heckman教授同时获
 傅里叶变换应该是在大一或者大二的时候就开始接触了,一直对其都是一知半解的状态。不是很清楚到底是干啥的,想趁着国庆假期好好学习一下(主要是算法太难了,想换换心情,算法太虐了)。本文参考了几位大佬的文章再加上一些FFT在雷达信号处理的用处以及自己的一点理解,另外本文只是简单了解傅里也变换的基础定义和内容,不涉及具体的公式推导。1、傅里叶变换(FT)的目的  傅里叶变换的目的是将时域(即时间域)上的信
引言LR回归,虽然这个算法从名字上来看,是回归算法,但其实际上是一个分类算法,学术界也叫它logit regression, maximum-entropy classification (MaxEnt)或者是the log-linear classifier。在机器学习算法中,有几十种分类器,LR回归是其中最常用的一个。logit和logistic模型的区别:二者的根本区别在于广义化线性模型中的
Logistic回归模型Logistich回归模型也被成为广义线性回归模型。 它是将线性回归模型的预测值经过非线性的Logit函数转换为[0,1]之间的概率值。 研究得是分类问题,跟之前的线性回归、岭回归、Lasso回归不同。混淆矩阵实际值 预 0 1 测 0 A B A+B 值 1 C D C+D A+C B+D -----------------
转载 2023-12-28 15:55:45
152阅读
1. 逻辑回归与线性回归的联系与区别2. 逻辑回归的原理3. 逻辑回归损失函数推导及优化4. 正则化与模型评估指标5. 逻辑回归的优缺点6. 样本不均衡问题解决办法7. sklearn方法使用附:代码(如有错误,感谢指出!)1.逻辑回归与线性回归的联系与区别联系:将线性回归输出的标记y的对数作为线性模型逼近的目标,即就是“对数线性回归”或“逻辑回归”。其在形式上仍是线性回归,但其是在求取输入空间到
 霍夫变换Hough霍夫变换(Hough)是一个非常重要的检测间断点边界形状的方法。它通过将图像坐标空间变换到参数空间,来实现直线与曲线的拟合。1.直线检测1.1 直线坐标参数空间在图像x−y坐标空间中,经过点(xi,yi)的直线表示为: yi=axi+b(1) 其中,参数a为斜率,b为截矩。 通过点(xi,yi)的直线有无数条,且对应于不同的a和b值。如果
作用霍夫变换是常用的图像变换,用于在图像中寻找直线、圆、椭圆等这类具有相同特征的几何图形。在许多应用场合中,都需要实现对特定形状物体的快速定位,而霍夫变换由于其对方向和噪声不敏感,因此在这类应用中发挥着重要作用。 原理霍夫变换最基本的思想通俗讲就是将图像中所有可能出现的几何图形位置进行遍历,以直线检测为例,就是在整幅图像中进行扫描所有可能的直线,看图像中的像素点对各直线的贡献。下面以直线为例,形象
有一定深度学习图像分割基础,至少阅读过部分语义分割或者医学图像分割文献开发环境 部分包版本python 3.7.9 torch 1.9.1 torchstat 0.0.7 torchsummary
  • 1
  • 2
  • 3
  • 4
  • 5