#-*- coding:utf-8 -*-#@author:whs#@time: 2019/3/2111:25import numpy as npdef Solve(mat, max_itrs, min_delta): """ mat 表示矩阵 max_itrs 表示最大迭代次数d min_delta 表示停止迭代阈值 """ itrs_num = 0 delta = float('inf') N = np.shape(mat).
原创
2021-08-26 10:42:19
37阅读
#-*- coding:utf-8 -*-#@author:whs#@time: 2019/3/2111:25import numpy as npdef Solve(mat, max_itrs, min_delta): """ mat 表示矩阵 max_itrs 表示最大迭代次数d min_delta 表示停止迭代阈值 """ itrs_num = 0 delta = float('inf') N = np.shape(mat).
原创
2022-01-15 11:15:16
88阅读
幂法求解矩阵特征值及特征向量
【算法原理】
幂法是通过求矩阵特征向量来求出特征值的一种迭代法.其基本思想是:若我们求某个n阶方阵A的特征值和特征向量,先任取一个初始向量X(0),构造如下序列:
X(0) ,X(1) =AX(0)&nbs
幂法是通过迭代来计算矩阵的主特征值(按模最大的特征值)与其对应特征向量的方法,适合于用于大型稀疏矩阵。 基本定义 设$A = (a_{ij})\in R^{n\times n}$,其特征值为$\lambda_i$,对应特征向量$x_i(i=1,...,n)$,即$Ax_i = \lambda_i x
原创
2022-01-14 16:51:50
1587阅读
1、工程实践中有多种振动问题,如桥梁或建筑物的振动,机械机件的振动,飞机机翼的颤动等,还有一些稳定性分析及相关性分析问题,都可以转化为求矩阵特征值与特征向量的问题。2、幂法是求矩阵最大模的特征值和相应特征向量的有效而简单的方法,特别适用于大型矩阵或稀疏矩阵,也是计算矩阵谱半径的有效方法,但是它的收敛速度是线性的,一般使用原点位移法或者Aitken外推加速技术加速收敛。方法提出——设n x n阶实矩
在解决一些数学问题时经常用到快速幂算法,自己有过这样的疑问,快速幂为什么这么快?现在
原创
2022-08-09 18:10:10
46阅读
题目:实现函数double Power(double base,int exponent),求base的exponent次方。不得使用库函数,同时不需要考虑大数问题1、自以为很简单的解法:由于不需要考虑大数问题,这道题看起来很简单,可能不少应聘者在看到题目30秒后就能写出如下的代码: 1. public double powerWithExponent(double bas
转载
2023-07-21 13:21:17
43阅读
集合A的幂集是由集合A的所有子集所组成的的集合,如:A={1,2,3},则A的幂集P(A)={{1,2,3},{1,2},{1,3},{1},{2,3},{2},{3},{ }},求一个集合的幂集就是求一个集合的所有的子集,方法有穷举法,分治法,回溯等,这里主要介绍一下回溯法。 回溯法是设计递归过程的一种重要的方法,它的求解过实质上是一个先序遍历一棵“状态树”的过程,只是这棵树不是遍历前预先建立的,而是隐含在遍历过程中的。 幂集中的每个元素是一个集合,它或是空集,或含集合A中一个元素,或含集合A中两个元素…… 或等于集合A。反之,从集合A 的每个元素来看,它只有两种状态:它或属幂集的无素集,.
转载
2013-07-27 15:08:00
542阅读
2评论
代码详解
long long quickmod(long long a,long long b,long long m)
{
long long ans = 1;
while(b)//用一个循环从右到左遍历b的所有二进制位
{
if(b&1)//判断此时b[i]的二进制位是否为1
{
ans = (ans*a)%m
原创
2022-08-04 13:50:33
77阅读
#include "stdio.h" /** 显示数组* 只显示begin 到 end 下标间的数据到对应位置。* 如,数组为 13, 17, 12 并先后执行:* show(array, 3, 0, 2);* show(array, 3, 1, 2);* show(array, 3, 1, 1);* 会显示为:* 13 17 12* 17 12* 17*/void show(int
原创
2015-09-03 14:17:01
752阅读
快排 java实现快速排序使用分治法(Divide and conquer)策略来把一个序列(list)分为较小和较大的2个子序列,然后递归地排序两个子序列。快排的核心思想是:将要排序的序列(假设下标是从start到end)中选任意一个数据作为pivot(分区点,也叫基准点),然后遍历数据,将小于pivot 的数据放在pivot的前面,大于等于 pivot 的数据放在pivot的后面。之后递归的将
转载
2023-07-22 20:33:39
65阅读
1、完全基于内存,绝大部分请求是纯粹的内存操作,非常快速。数据存在内存中,类似于HashMap,HashMap的优势就是查找和操作的时间复
原创
2022-10-28 16:34:17
95阅读
快速排序快速排序就是快排序思路取一个元素p(第一个元素),使元素p归位;列表被p分成两部分,左边的数一定不大于p,右边的数一定不小于p;递归完成排序。Python代码示例:lst = [5, 7, 4, 3, 1, 2, 9, 8]def quick_sort(data, left, right): if left < right: mid =...
转载
2021-07-20 14:36:33
175阅读
幂迭代法,和逆幂迭代法 文章目录幂迭代法,和逆幂迭代法写在前面一、幂迭代法二、逆幂迭代法三、规范化迭代方式四、A分解例总结 写在前面承接笔记3,先补一个盖尔圆的题目如果特征值是复数,则会有成对出现,并且两个特征值的位置关于实轴对称题目引自: 南理工-高等工程数学突击一、幂迭代法对于五次或五次以上的多项式方程一般没有公式求解,所以对阶数较大的矩阵,其特征值计算往往非常困难。幂迭代法是一种近似求得特征
# 使用幂法求特征值的 Python 实现
幂法(Power Iteration)是一种用于计算矩阵特征值和特征向量的简单且有效的算法。对于刚入行的小白来说,我们将通过以下步骤逐步带你实现这个过程。
## 流程概述
我们可以将幂法求特征值的过程分为以下几个步骤:
| 步骤 | 描述 |
|--------
文章目录1.前言2.方法介绍3.算法步骤4.数值实验5.总结6.Matlab代码 1.前言乘幂法主要用于求实矩阵按模最大的特征值(主特征值)和相应特征向量.本文通过Matlab解决实际例子来验证乘幂法的正确性.2.方法介绍设实矩阵A的特征值为,相应特征向量线性无关.假设矩阵的特征值按模排序为,于是对任一非零向量可得到(1) 令(2) 可得向量序列: (3) 下面仅讨论的情况: 由式(2)(3)知
熟悉一下什么是递归// 一个简单的阶乘函数 var f = function (x) { if (x === 1) { return 1; } else { return x * f(x - 1); } }var b = f(4)// 执行过程// 4*f(3) 4*3*f(2) 4*3*2*f(1)console.log(b)递归排序也就是:快排(1)从数列中取出一个数作为参考,分区过程。
原创
2022-11-18 00:06:35
49阅读
本篇文章根据labuladong的算法小抄汇总回溯算法的相关常见算法,采用python3实现回溯算法框架(DFS)回溯算法就是DFS算法(depth first searc,深度优先搜索算法),本质上是一种暴力穷举算法回溯问题实际上就是决策树的遍历过程:1、路径:已经做出的选择2、选择列表:当前可以做的选择3、结束条件:到达决策树底层,无法再做选择的条件回溯算法的框架result = []
def
幂法是通过求矩阵特征向量来求出特征值的一种迭代法,本文使用C++对其进行实现
幂法求解矩阵特征值及特征向量【算法原理】幂法是通过求矩阵特征向量来求出特征值的一种迭代法.其基本思想是:若我们求某个n阶方阵A的特征值和特征向量,先任取一个初始向量X(0),构造如下序列: X(0
转载
2023-07-08 21:52:56
111阅读
一、N皇后问题n皇后问题:要求在一个n×n的棋盘上放置n个皇后,使得任意两个皇后不在同一行或同一列或同一斜线上。二、回溯法回溯法是一类非常重要的算法设计方法,有“通用解题法”之称。回溯法(探索与回溯法):一种选优搜索法,又称试探法。利用试探性的方法,在包含问题所有解的解空间树中,将可能的结果搜索一遍,从而获得满足条件的解。搜索过程采用深度遍历策略,并随时判定结点是否满足条件要求,满足要求就继续向下