6行代码实现kNN算法监督学习-分类算法-kNNkNN:K最近邻算法,k-Nearest Neighbork个最近的邻居属于:监督学习,分类算法kNN算法思想衡量未知分类点周围邻居的权重然后把它归类到权重更大的那一类较适用于类域交叉重叠的样本kNN算法描述输入k值对未知类别数据集中的每一个点依此执行以下操作
计算当前点与已知类别数据集中的点之间的距离按照距离以递增次序排序选取与当前点距离最小
转载
2023-11-19 10:35:28
99阅读
纸上得来终觉浅,仅仅懂了原理还不够,要用代码实践才是王道,今天小编就附上小编自己在学习中实践的KNN算法。KNN算法伪代码:对未知类别属性的数据集中的每个点一次执行以下操作:(1)计算已知类别数据集中的点与当前点之间的距离;(2)按照距离递增次序排序;(3)选取与当前点距离最小的k个点;(4)确定前k个点所在类别出现的频率(5)返回前k个点出现频率最高的类别作为当前点的预测分类;Python代码如
转载
2023-09-18 18:58:57
0阅读
问:k最近邻分类模型是非线性模型。答:正确。k最近邻分类模型是非线性模型,因为它的决策边界是由最近邻居点的类别决定的,而最近邻居点的分布通常是不规则的,因此决策边界也就不是线性的。因此,k最近邻分类模型是一种非参数化的方法,它能够适应各种复杂的数据集,并且不需要预先假设数据的分布形式。最近有一批数据,通过4个特征来预测1个值,原来用线性回归和神经网络尝试过,准确率只能到40%左右。用KNN结合网格
转载
2024-03-19 13:03:01
99阅读
KMeans聚类基于python有两种实现方式,一种是手动写算法实现聚类,另一种是采用写好的算法自动实现聚类,下面针对两种方法进行代码实现一、数据准备 文件 testSet.txt 数据如下:1.658985 4.285136
-3.453687 3.424321
4.838138 -1.151539
-5.379713 -3.362104
0.9725
转载
2024-09-19 20:02:19
69阅读
kNN是一种常见的监督学习方法。工作机制简单:给定测试样本,基于某种距离度量找出训练集中与其最靠近的k各训练样本,然后基于这k个“邻居”的信息来进行预测,通常,在分类任务中可使用“投票法”,即选择这k个样本中出现最多的类别标记作为预测结果;在回归任务中可以使用“平均法”,即将这k个样本的实值输出标记的平均值作为预测结果;还可以基于距离远近进行加权平均或加权投票,距离越
转载
2024-04-24 12:53:50
161阅读
K-means方法是一种非监督学习的算法,它解决的是聚类问题。1、算法简介:K-means方法是聚类中的经典算法,数据挖掘十大经典算法之一;算法接受参数k,然后将事先输入的n个数据对象划分为k个聚类以便使得所获得的聚类满足聚类中的对象相似度较高,而不同聚类中的对象相似度较小。2、算法思想:以空间中k个点为中心进行聚类,对最靠近他们的对象归类,通过迭代的方法,逐次更新各聚类中心的值,直到得到最好的聚
导语:scikit-learn是Python中一个功能非常齐全的机器学习库,本篇文章将介绍如何用scikit-learn来进行kNN分类计算。不费话from sklearn import neighbors开始吧。功能详解本篇中,我们讲解的是 scikit-learn 库中的 neighbors.KNeighborsClassifier,翻译为 k 最近邻分类功能,也就是我们常说的 kNN,k-n
转载
2024-09-03 21:59:21
40阅读
KNN(K-Nearest Neighbor) K 近邻算法,K近邻就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表。KNN算法用于监督学习分类模型,预测结果是离散的机器学习算法。 KNN算法原理: 1、计算每个测试数据与每个训练数据的距离(相识度); 2、按照距离升序,对训练集数据进行排序; 3、获取距离最近的k个邻居,获取这k个邻居中的众数(取其中
转载
2023-05-27 14:41:59
235阅读
内容参考了某_统计学习方法_。KNN算法的主要实现步骤:计算测试数据与各训练数据之间的距离。按照距离的大小进行排序。选择其中距离最小的k个样本点。确定K个样本点所在类别的出现频率。返回K个样本点中出现频率最高的类别作为最终的预测分类。此次实现的方式是对数据进行一个测试,并且这个knn就是单纯的近邻,没有对距离采取加权处理,并且没有使用kd树,代码如下'''
采用线性的方式实现KNN算法
'''
转载
2023-06-20 17:12:22
154阅读
kNN算法的伪代码如下:计算当前点与已知类别的数据集的每个点的距离 距离公式为d=[(x-x₀)²+(y-y₀)²]½按照求得的距离按递增排序  
转载
2023-07-07 21:20:10
127阅读
import numpy as np
import pandas as pd对数据集操作data=pd.read_csv(r"F:\数据集\Iris数据集\iris.csv")
#删除Unnamed: 0与Species对应的列(特征),因为现在进行回归预测,类别信息就没有用处了
data.drop(["Unnamed: 0","Species"],axis=1,inplace=True)
#删除
转载
2024-04-21 17:32:08
44阅读
话不多说,直接上代码,数据集在百度网盘中,链接如下: 链接:https://pan.baidu.com/s/1gOTQ1KbFUmDNQYA_0nWg 提取码:softimport matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np
import pandas as pd
data = pd.read_csv(
转载
2023-07-07 21:19:47
61阅读
一、KNN简述KNN是比较经典的算法,也是是数据挖掘分类技术中最简单的方法之一。KNN的核心思想很简单:离谁近就是谁。具体解释为如果一个实例在特征空间中的K个最相似(即特征空间中最近邻)的实例中的大多数属于某一个类别,则该实例也属于这个类别。换个说法可能更好理解,比如一个一定范围的平面随机分布着两种颜色的样本点,在这个平面内有个实例点不知道它是什么颜色,因此通过它周边的不同颜色的点分布
转载
2023-07-15 21:42:22
184阅读
KNN算法全名为k-Nearest Neighbor,就是K最近邻的意思。算法描述KNN是一种分类算法,其基本思想是采用测量不同特征值之间的距离方法进行分类。算法过程如下:1、准备样本数据集(样本中每个数据都已经分好类,并具有分类标签);2、使用样本数据进行训练;3、输入测试数据A;4、计算A与样本集的每一个数据之间的距离;5、按照距离递增次序排序;6、选取与A距离最小的k个点;7、计算前k个点所
转载
2024-02-29 11:20:34
102阅读
手写算法-python代码实现KNN原理解析代码实现实例展示sklearn对比总结 原理解析KNN-全称K-Nearest Neighbor,最近邻算法,可以做分类任务,也可以做回归任务,KNN是一种简单的机器学习方法,它没有传统意义上训练和学习过程,实现流程如下: 1、在训练数据集中,找到和需要预测样本最近邻的K个实例; 2、分别统计这K个实例所属的类别,最多的那个类别就是样本预测的类别(多数
转载
2023-07-07 21:20:35
89阅读
一、算法介绍最简单易懂的机器学习算法,没有之一。1968年由 Cover 和 Hart 提出,应用场景有字符识别、文本分类、图像识别等领域。该算法的思想是:一个样本与数据集中的k个样本最相似,如果这k个样本中的大多数属于某一个类别,则该样本也属于这个类别。二、分类算法步骤1、计算样本到数据集中其它每个样本的距离。2、按照距离的远近排序。3、选取与当前样本最近的k个样本,作为该样本的邻居。4、统计这
转载
2024-05-12 14:03:04
44阅读
邻近算法(k-NearestNeighbor) 是机器学习中的一种分类(classification)算法,也是机器学习中最简单的算法之一了。虽然很简单,但在解决特定问题时却能发挥很好的效果。因此,学习kNN算法是机器学习入门的一个很好的途径。kNN算法的思想非常的朴素,它选取k个离测试点最近的样本点,输出在这k个样本点中数量最多的标签(label)。我们假设每一个样本有m个特征值(propert
转载
2023-11-09 06:47:47
75阅读
KNN依然是一种监督学习算法KNN(K Nearest Neighbors,K近邻)算法是机器学习所有算法中理论最简单,最好理解的。KNN是一种基于实例的学习,通过计算新数据与训练数据特征值之间的距离,然后选取K(K>=1)个距离最近的邻居进行分类判断(投票法)或者回归。如果K=1,那么新数据被简单分配给其近邻的类。KNN算法算是监督学习还是无监督学习呢?首先来看一下监督学习和无监督学习的定
转载
2023-11-05 12:29:39
55阅读
K近邻法(k-nearest neighbors,KNN)是一种很基本的机器学习方法了,在我们平常的生活中也会不自主的应用。比如,我们判断一个人的人品,只需要观察他来往最密切的几个人的人品好坏就可以得出了。这里就运用了KNN的思想。KNN方法既可以做分类,也可以做回归,这点和决策树算法相同。KNN算法是选择与输入样本在特征空间内最近邻的k个训练样本并根据一定的决策规则,给出输出结果 。KNN算法是
转载
2024-04-25 10:56:14
42阅读
knn特点优点:精度高,对异常值不明感,无数据输入嘉定缺点:计算复杂度高,空间复杂度高适用范围:数值型和标称型knn算法的伪代码1、计算已知类别数据集中的点与当前之间的距离2、按照距离递增次序排序3、选取与当前点距离最6,小的k个点4、确定前k个点所在的类别的出现频率5、返回前k个点出现频率最高的类别作为当前点的预测分类 示例:knn最近邻算法改进约会网站的匹配记录1、收集数据:提供文本
转载
2024-04-25 13:44:13
121阅读