KMeans聚类基于python有两种实现方式,一种是手动写算法实现聚类,另一种是采用写好的算法自动实现聚类,下面针对两种方法进行代码实现一、数据准备  文件 testSet.txt 数据如下:1.658985 4.285136 -3.453687 3.424321 4.838138 -1.151539 -5.379713 -3.362104 0.9725
转载 2024-09-19 20:02:19
69阅读
1. kNN分类算法原理     1.1 概述         K最近邻(k-Nearest Neighbor,KNN)分类算法是最简单的机器学习算法。[         机器学习,算法本身不是最难的,最难的是:         1、数学建模:把业务中的特性抽
转载 2024-08-12 13:47:45
75阅读
文章目录一、KNN 简介二、KNN 核心思想实例分析:K 值的影响三、KNN 的关键1. 距离计算1. 闵可夫斯基距离2. 曼哈顿距离3. 欧氏距离4. 切比雪夫距离5. 余弦距离总结2. K值选择四、KNN 的改进:KDTree五、KNN 回归算法六、用 sklearn 实现 KNN函数原型可选参数方法参考链接 一、KNN 简介KNN 算法,或者称 k-最近邻算法,是 有监督学习 中的 分类算
KNN算法:近朱者赤近墨者黑一个例子:KNN原理又一个例子:使用KNN预测鸢尾花类型1、数据加载2、加载训练数据与测试数据3、使用sklearn的KNN进行预测4、检查一下预测的正确率 一个例子:KNN原理设想一个场景在一个小镇上有两个小区,一个是高档小区,另一个是贫民区,两个小区中间有一条河流。某一天,这个小镇上新来了一户人家,在不接触这家人的情况下,你怎么判断新来的这家是不是富人呢?俗话说“
KNN算法概述 KNN可以说是最简单的分类算法之一,同时,它也是最常用的分类算法之一,注意KNN算法是有监督学习中的分类算法,它看起来和另一个机器学习算法Kmeans有点像(Kmeans是无监督学习算法),但却是有本质区别的。那么什么是KNN算法呢,接下来我们就来介绍介绍吧。二.KNN算法介绍 KNN的全称是K Nearest Neighbors,意思是K个最近的邻居,从这个名字我们就能看出一些K
转载 2024-04-11 13:07:47
54阅读
  一、绪论K近邻法(k-nearest neighbors,KNN)是一种很基本的机器学习方法了,在我们平常的生活中也会不自主的应用。比如,我们判断一个人的人品,只需要观察他来往最密切的几个人的人品好坏就可以得出了。这里就运用了KNN的思想。KNN方法既可以做分类,也可以做回归,这点和决策树算法相同。   KNN做回归和分类的主要区别在于最后做预测时候的决策方式不同。KNN做分类预测时,一般是选
6行代码实现kNN算法监督学习-分类算法-kNNkNN:K最近邻算法,k-Nearest Neighbork个最近的邻居属于:监督学习,分类算法kNN算法思想衡量未知分类点周围邻居的权重然后把它归类到权重更大的那一类较适用于类域交叉重叠的样本kNN算法描述输入k值对未知类别数据集中的每一个点依此执行以下操作 计算当前点与已知类别数据集中的点之间的距离按照距离以递增次序排序选取与当前点距离最小
转载 2023-11-19 10:35:28
99阅读
KNN-machine leanring notes1.数据预处理2.分类精准度3.超参数3.1 超参数简介3.2超参数一-对于KNN来说寻找最好的K3.3 超参数二-权重3.4超参数网格搜索总结 1.数据预处理通常情况下我们的数据集都是按照一定规律导出,这时我们需要通过一定的方法都数据集进行打乱,这样才能更好的符合随机抽样的过程# 方法1# 使用concatenate函数进行拼接,因为传入的矩
转载 2024-09-11 06:38:38
30阅读
  买了王斌老师翻译的《机器学习实战》一书,里面全是干货,既可以练python,又可以学习机器学习算法知识,挺不错的,学习一些东西这里分享下。  k-近邻算法(knn),它的核心思想就一句话,如果两个东西各方面属性都很相似,那么这两个东西属于同一类。k的意思是有很多东西和你要判断的东西相似(称作x), 那么找出和x各方面属性最相似的k个东西,如果这k个东西里面大部分都属于类C,那么x就属于类C。 
一.Scikit-Learn许多知名机器学习的算法实现的库1.Scikit-Learn 包含,分类,聚类,回归,模型选择,特征处理,维度缩小几个大的功能模块,导入Sklearn模块import sklearn2.机器学习的步骤分析#1.获取数据集 #2.数据基本的处理和分析(分析主要是找特征) #3.特征工程 #4.机器学习 #5.模型评估3.KNN算法的代码实现#从sklearn的邻居中导入KN
      KNN算法相对于其他算法是一种特别好实现且易于理解的分类算法,主要根据不同特征之间的距离来进行分类。一般的分类算法首先要训练一个模型,然后用测试集检验模型,但是KNN算法不用训练模型,直接采用待测样本与训练样本的距离来实现分类。      KNN基本原理:根据距离函数计算待分类样本X和每个训练样本的距离,选择与待分类样本距离最
转载 2024-04-16 16:10:00
99阅读
纸上得来终觉浅,仅仅懂了原理还不够,要用代码实践才是王道,今天小编就附上小编自己在学习中实践的KNN算法。KNN算法伪代码:对未知类别属性的数据集中的每个点一次执行以下操作:(1)计算已知类别数据集中的点与当前点之间的距离;(2)按照距离递增次序排序;(3)选取与当前点距离最小的k个点;(4)确定前k个点所在类别出现的频率(5)返回前k个点出现频率最高的类别作为当前点的预测分类;Python代码
问:k最近邻分类模型是非线性模型。答:正确。k最近邻分类模型是非线性模型,因为它的决策边界是由最近邻居点的类别决定的,而最近邻居点的分布通常是不规则的,因此决策边界也就不是线性的。因此,k最近邻分类模型是一种非参数化的方法,它能够适应各种复杂的数据集,并且不需要预先假设数据的分布形式。最近有一批数据,通过4个特征来预测1个值,原来用线性回归和神经网络尝试过,准确率只能到40%左右。用KNN结合网格
数据-weather数据集outlooktemperaturehumiditywindplay ballsunnyhothighweaknosunnyhothighstrongnoovercasthothighweakyesrainmildhighweakyesraincoolnormalweakyesraincoolnormalstrongnoovercastcoolnormalstrongye
转载 2024-04-01 08:29:04
335阅读
定义kNN == k-NearestNeighbor k个最近的邻居核心思想——如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。最大特点——kNN方法在类别决策时,只与极少量的相邻样本有关。适用情况——类域的交叉或重叠较多的待分样本集例子已知条件如下一、聪明人用蓝色方块 表示二、笨人用红色三角形 表示三、有个村庄,里面只有两种
导语:scikit-learn是Python中一个功能非常齐全的机器学习库,本篇文章将介绍如何用scikit-learn来进行kNN分类计算。不费话from sklearn import neighbors开始吧。功能详解本篇中,我们讲解的是 scikit-learn 库中的 neighbors.KNeighborsClassifier,翻译为 k 最近邻分类功能,也就是我们常说的 kNN,k-n
转载 2024-09-03 21:59:21
40阅读
K-means方法是一种非监督学习的算法,它解决的是聚类问题。1、算法简介:K-means方法是聚类中的经典算法,数据挖掘十大经典算法之一;算法接受参数k,然后将事先输入的n个数据对象划分为k个聚类以便使得所获得的聚类满足聚类中的对象相似度较高,而不同聚类中的对象相似度较小。2、算法思想:以空间中k个点为中心进行聚类,对最靠近他们的对象归类,通过迭代的方法,逐次更新各聚类中心的值,直到得到最好的聚
     kNN是一种常见的监督学习方法。工作机制简单:给定测试样本,基于某种距离度量找出训练集中与其最靠近的k各训练样本,然后基于这k个“邻居”的信息来进行预测,通常,在分类任务中可使用“投票法”,即选择这k个样本中出现最多的类别标记作为预测结果;在回归任务中可以使用“平均法”,即将这k个样本的实值输出标记的平均值作为预测结果;还可以基于距离远近进行加权平均或加权投票,距离越
转载 2024-04-24 12:53:50
161阅读
KNN依然是一种监督学习算法KNN(K Nearest Neighbors,K近邻)算法是机器学习所有算法中理论最简单,最好理解的。KNN是一种基于实例的学习,通过计算新数据与训练数据特征值之间的距离,然后选取K(K>=1)个距离最近的邻居进行分类判断(投票法)或者回归。如果K=1,那么新数据被简单分配给其近邻的类。KNN算法算是监督学习还是无监督学习呢?首先来看一下监督学习和无监督学习的定
K近邻法(k-nearest neighbors,KNN)是一种很基本的机器学习方法了,在我们平常的生活中也会不自主的应用。比如,我们判断一个人的人品,只需要观察他来往最密切的几个人的人品好坏就可以得出了。这里就运用了KNN的思想。KNN方法既可以做分类,也可以做回归,这点和决策树算法相同。KNN算法是选择与输入样本在特征空间内最近邻的k个训练样本并根据一定的决策规则,给出输出结果 。KNN算法是
转载 2024-04-25 10:56:14
42阅读
  • 1
  • 2
  • 3
  • 4
  • 5