Kmeans算法是十分常用的算法,给定聚的数目N,Kmeans会自动在样本数据中寻找N个质心,从而将样本数据分为N个别。下面简要介绍Kmeans原理,并附上自己写的Kmeans算法实现。一、Kmeans原理  1. 输入:一组数据data,设定需要的类别数目ClusterCnt,设定迭代次数IterCnt,以及迭代截止精度eps      输出:数据da
上两篇文章分别用朴素贝叶斯算法和KNN算法对newgroup文本进行了分类測试。本文使用Kmeans算法对文本进行。1、文本预处理文本预处理在前面两本文章中已经介绍,此处(略)。2、文本向量化package com.datamine.kmeans; import java.io.*; import java.util.*; import java.util.Map.Entry; /**
转载 2024-10-08 13:03:53
20阅读
文本算法介绍分类和都是文本挖掘中常使用的方法,他们的目的都是将相似度高的对象归类,不同点在于分类是采用监督学习,分类算法按照已经定义好的类别来识别一篇文本,而是将若干文本进行相似度比较,最后将相似度高的归为一。在分类算法中,训练集为已经标注好的数据集,但是微博文本具有的大数据特性及不确定性决定了标注数据的难度,因此本文选择算法对大量且随机的微博文本进行处理。大量文本建模后还需要对
算法简介kmeans算法是无监督学习算法,它的主要功能就是把相似的类别规到一中,虽然它和knn算法都是以k开头,但是knn却是一种监督学习算法.那我们怎样去区分样本间的相似性呢?其实计算相似性的方式有很多,其中最常用的是欧示距离。算法的实现原理假设我们有个样本点,这个样本点有个分类,首先我们随机选取个样本点作为质心,我们遍历个样本点,计算与每个质心的距离,找与哪一个质心的距离最小,那么就
目录 目录 1 一、研究背景与目的 2 二、实习招聘信息数据的获取与说明 2 三、文本提取技能要求 4 (一)职位描述文本的预处理 4 1.分句 5 2.分词 5 去除停用词指过滤文本中的特殊字符和对文本含义无意义的词语。例如 6 (二)文本预处理效果 6 (三)文本 7 3.NMF 10 (四)方法的比较 11 1.效果 11 四、文本量化技能要求 11 (一)专业技能
算法优缺点:优点:容易实现缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢使用数据类型:数值型数据算法思想k-means算法实际上就是通过计算不同样本间的距离来判断他们的相近关系的,相近的就会放到同一个类别中去。1.首先我们需要选择一个k值,也就是我们希望把数据分成多少,这里k值的选择对结果的影响很大,Ng的课说的选择方法有两种一种是elbow method,简单的说就是根据的结果和k的
代码是在weka上二次开发的,但没有使用原来的kmeans代码,只是用了它的数据Intances,先说下与它相关的几点东西。一、KMeans算法简介输入
转载 2013-12-06 19:12:00
278阅读
2评论
Kmeans算法1 Kmeans算法的基本原理 K-means算法是最为经典的基于划分的方法,是十大经典数据挖掘算法之一。K-means算法的基本思想是:以空间中k个点为中心进行,对最靠近他们的对象归类。通过迭代的方法,逐次更新各中心的值,直至得到最好的结果。假设要把样本集分为k个类别,算法描述如下:  (1)适当选择k个的初始中心,最初一般为随机选取;  (2)在每次迭
转载 2023-08-12 15:14:24
111阅读
 1. Kmeans算法原理1.1 概述K-means算法是集简单和经典于一身的基于距离的算法采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。 1.2 算法图示假设我们的n个样本点分布在图中所示的二维空间。从数据点的大致形状可以看出它们大致为三个cluster,其中两
## 1 k-Means算法k-Means算法是一种经典的算法,也称为K均值算法。k-Means的工具原理:假设建立一个坐标系,这个坐标系的横坐标是价格,纵坐标是评论。然后根据每个物品的这两项特征将物品放置在该坐标系中,那么如何将这些物品划分为k个。此时K为自定义。例如,可以定义k为2,既将所有的物品划分为两。首先,随机选择两的中心点AB,这两的称为中心。初始的中心是随机选
1. Kmeans算法原理     1.1 概述         K-means算法是集简单和经典于一身的基于距离的算法         采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。         该算法认为簇是由距离靠
转载 2024-08-09 16:06:41
53阅读
与分类的区别分类:类别是已知的,通过对已知分类的数据进行训练和学习,找到这些不同类的特征,再对未分类的数据进行分类。属于监督学习。:事先不知道数据会分为几类,通过聚类分析将数据聚合成几个群体。不需要对数据进行训练和学习。属于无监督学习。关于监督学习和无监督学习,这里给一个简单的介绍:是否有监督,就看输入数据是否有标签,输入数据有标签,则为有监督学习,否则为无监督学习。更详尽的解释会在后
转载 2024-06-29 07:40:24
28阅读
机器学习-文本实例-kmeans import os import gensim import jieba from gensim.models.doc2vec import Doc2Vec from sklearn.cluster import KMeans TaggededDocument
原创 2022-06-10 19:24:38
321阅读
利用 python 实现 K-Means一.k-means算法简介(一)k-means算法的概念  k-means算法是很典型的基于距离的算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。   k个初始类聚中心点的选取对结果具有较大的影响,因为在该算法第一步中是随机的选取任
转载 2023-08-14 23:00:34
153阅读
一、实验要求(10%)1. 熟练使用Python中数据处理分析的基本操作2. 理解并掌握常用的算法,能使用Python实现算法——Kmeans (1)将数据准备成需要的格式(2)编写算法(3)完成算法的训练和测试 二、实验内容及步骤(80%) 计算欧拉距离并计算质心位置 使用K-means分类,随机取质心,更新质心,知道变化量都为0,并根据质心计算每个集群
KMeans算法思想基本方法 算法伪代码:算法时间复杂度:时间复杂度:O(T*n*k*m)空间复杂度:O(n*m)n:元素个数,k:第一步中选取的元素个数,m:每个元素的特征项个数,T:第5步中迭代的次数。算法代码:# 注意,这里采用的是完全随机初始化,这样的效果不是很好。因为可能会存在有病态的初始化结果。 # 正确方法应该是从样本中随机选择k个点作为初始点。算法损失函数:平方误差:
转载 2023-12-13 16:24:50
54阅读
Kmeans算法及简单案例Kmeans算法流程选择的个数k.任意产生k个,然后确定聚中心,或者直接生成k个中心。对每个点确定其中心点。再计算其新中心。重复以上步骤直到满足收敛要求。(通常就是确定的中心点不再改变。)Kmeans算法流程案例将下列数据点用K-means方法进行(这里使用欧式距离作为度量,K取值为2) P1~P15这15个数据点的二维坐标图如下:指定P1、P2为初
转载 2023-08-25 16:25:56
167阅读
理论Python实现
原创 2022-11-02 09:43:44
191阅读
K-means算法(事先数据并没有类别之分!所有的数据都是一样的)1、概述K-means算法是集简单和经典于一身的基于距离的算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。2、核心思想通过迭代寻找k个簇的一种划分方案,使得用这k个簇的均值来代表相应各类样本时所得的总体误差最小。k
转载 2023-08-25 17:25:47
313阅读
1.k均值简介k均值是一种无监督学习方法,当数据量小,数据维度低时,具有简单、快速、方便的优点,但是当数据量较大时,其速度较慢,也容易陷入局部最优。2. 步骤和以前一样,kMeans的原理在网上有很多讲解,所以这里不在赘述,直接给出步骤,而通过伪代码将是一个描述步骤的不错选择:随机初始化k个中心 while 有样本所属的中心发生改变时: for 每个样本i: 初始化所有簇
  • 1
  • 2
  • 3
  • 4
  • 5