目录 目录 1 一、研究背景与目的 2 二、实习招聘信息数据的获取与说明 2 三、文本聚类提取技能要求 4 (一)职位描述文本的预处理 4 1.分句 5 2.分词 5 去除停用词指过滤文本中的特殊字符和对文本含义无意义的词语。例如 6 (二)文本预处理效果 6 (三)文本聚类 7 3.NMF 聚类 10 (四)聚类方法的比较 11 1.聚类效果 11 四、文本聚类量化技能要求 11 (一)专业技能            
                
         
            
            
            
            上两篇文章分别用朴素贝叶斯算法和KNN算法对newgroup文本进行了分类測试。本文使用Kmeans算法对文本进行聚类。1、文本预处理文本预处理在前面两本文章中已经介绍,此处(略)。2、文本向量化package com.datamine.kmeans;
import java.io.*;
import java.util.*;
import java.util.Map.Entry;
/**            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-10-08 13:03:53
                            
                                20阅读
                            
                                                                             
                 
                
                             
         
            
            
            
            文本聚类算法介绍分类和聚类都是文本挖掘中常使用的方法,他们的目的都是将相似度高的对象归类,不同点在于分类是采用监督学习,分类算法按照已经定义好的类别来识别一篇文本,而聚类是将若干文本进行相似度比较,最后将相似度高的归为一类。在分类算法中,训练集为已经标注好的数据集,但是微博文本具有的大数据特性及不确定性决定了标注数据的难度,因此本文选择聚类算法对大量且随机的微博文本进行处理。大量文本建模后还需要对            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-07-05 21:18:26
                            
                                54阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            作者 | 泳鱼一、聚类简介Clustering (聚类)是常见的unsupervised learning (无监督学习)方法,简单地说就是把相似的数据样本分到一组(簇),聚类的过程,我们并不清楚某一类是什么(通常无标签信息),需要实现的目标只是把相似的样本聚到一起,即只是利用样本数据本身的分布规律。聚类算法可以大致分为传统聚类算法以及深度聚类算法:传统聚类算法主要是根据原特征+基于划分/密度/层            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-04-22 20:10:30
                            
                                34阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            算法优缺点:优点:容易实现缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢使用数据类型:数值型数据算法思想k-means算法实际上就是通过计算不同样本间的距离来判断他们的相近关系的,相近的就会放到同一个类别中去。1.首先我们需要选择一个k值,也就是我们希望把数据分成多少类,这里k值的选择对结果的影响很大,Ng的课说的选择方法有两种一种是elbow method,简单的说就是根据聚类的结果和k的            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-08-20 20:28:35
                            
                                89阅读
                            
                                                                             
                 
                
                             
         
            
            
            
            k-means算法是一种聚类算法,所谓聚类,即根据相似性原则,将具有较高相似度的数据对象划分至同一类簇,将具有较高相异度的数据对象划分至不同类簇。聚类与分类最大的区别在于,聚类过程为无监督过程,即待处理数据对象没有任何先验知识,而分类过程为有监督过程,即存在有先验知识的训练数据集。k-means算法中的k代表类簇个数,means代表类簇内数据对象的均值(这种均值是一种对类簇中心的描述),因此,k-            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-08-23 20:58:07
                            
                                272阅读
                            
                                                                             
                 
                
                             
         
            
            
            
            Kmeans聚类算法是十分常用的聚类算法,给定聚类的数目N,Kmeans会自动在样本数据中寻找N个质心,从而将样本数据分为N个类别。下面简要介绍Kmeans聚类原理,并附上自己写的Kmeans聚类算法实现。一、Kmeans原理  1. 输入:一组数据data,设定需要聚类的类别数目ClusterCnt,设定迭代次数IterCnt,以及迭代截止精度eps      输出:数据da            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-01-08 15:47:26
                            
                                55阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            无监督学习:【机器学习】使用scikitLearn对数据进行聚类:Kmeans聚类算法的应用及密度聚类DBSCAN【机器学习】使用scikitLearn对数据进行聚类:高斯聚类GaussianMixture【机器学习】使用scikitLearn对数据进行聚类:7种异常和新颖性检测方式聚类是典型的无监督学习的一种,它将相似的元素聚集在一起。 聚类的应用有很多,比如降维,将一群实例点集聚成K类,每个实            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-05-07 19:51:07
                            
                                89阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            Kmeans算法流程从数据中随机抽取k个点作为初始聚类的中心,由这个中心代表各个聚类 计算数据中所有的点到这k个点的距离,将点归到离其最近的聚类里 调整聚类中心,即将聚类的中心移动到聚类的几何中心(即平均值)处,也就是k-means中的mean的含义 重复第2步直到聚类的中心不再移动,此时算法收敛 最后kmeans算法时间、空间复杂度是: 时间复杂度:上限为O(tKmn),下限为Ω(Kmn)其中,            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-07-16 11:24:28
                            
                                100阅读
                            
                                                                             
                 
                
                             
         
            
            
            
            K-means聚类算法(事先数据并没有类别之分!所有的数据都是一样的) K-means聚类1 概述2 核心思想3 算法步骤4 代码实现 1 概述K-means算法是集简单和经典于一身的基于距离的聚类算法采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为类簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。2 核心思想通过迭代寻找k个类簇的一种划分方案,            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-04-05 13:00:09
                            
                                137阅读
                            
                                                                             
                 
                
                             
         
            
            
            
            K-meansK-means算法简述K-means算法思考常用的几种距离计算方法KMean算法的算法优缺点与适用场景优点缺点代码2D数据3D数据 K-means算法简述K-means算法,也称为K-平均或者K-均值,一般作为掌握聚类算法的第一个算法。这里的K为常数,需事先设定,通俗地说该算法是将没有标注的 M 个样本通过迭代的方式聚集成K个簇。在对样本进行聚集的过程往往是以样本之间的距离作为指标            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-04-15 13:37:58
                            
                                69阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            K-means聚类算法(事先数据并没有类别之分!所有的数据都是一样的)1、概述K-means算法是集简单和经典于一身的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为类簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。2、核心思想通过迭代寻找k个类簇的一种划分方案,使得用这k个类簇的均值来代表相应各类样本时所得的总体误差最小。k            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-08-25 17:25:47
                            
                                313阅读
                            
                                                                             
                 
                
                             
         
            
            
            
            Kmeans 是一种动态聚类方法,其基本思想是:首先随机选取 K 个点作为初始凝聚点,按照距离最近原则划分为 K 类;然后重新计算 K 个类的重心作为新的凝聚点,再按照距离最近原则重新分类;重复这一过程,直到重心不再变化为止。下面是一个简单利用 kmeans 聚类分析的例子,数据为某一年全国31个省市的居民消费支出数据:食品衣着居住家庭设备交通通讯文教娱乐医疗保健其他北京4215.561184.1            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-08-18 15:07:09
                            
                                89阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            Kmeans算法及简单案例Kmeans算法流程选择聚类的个数k.任意产生k个聚类,然后确定聚类中心,或者直接生成k个中心。对每个点确定其聚类中心点。再计算其聚类新中心。重复以上步骤直到满足收敛要求。(通常就是确定的中心点不再改变。)Kmeans算法流程案例将下列数据点用K-means方法进行聚类(这里使用欧式距离作为度量,K取值为2) P1~P15这15个数据点的二维坐标图如下:指定P1、P2为初            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-08-25 16:25:56
                            
                                167阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            K-means算法的优点是:首先,算法能根据较少的已知聚类样本的类别对树进行剪枝确定部分样本的分类;其次,为克服少量样本聚类的不准确性,该算法本身具有优化迭代功能,在已经求得的聚类上再次进行迭代修正剪枝确定部分样本的聚类,优化了初始监督学习样本分类不合理的地方;第三,由于只是针对部分小样本可以降低总的聚类时间复杂度。K-means算法的缺点是:首先,在 K-means 算法中 K 是事先给定的,这            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-09-21 07:37:32
                            
                                90阅读
                            
                                                                             
                 
                
                             
         
            
            
            
            这个算法中文名为k均值聚类算法,首先我们在二维的特殊条件下讨论其实现的过程,方便大家理解。第一步.随机生成质心由于这是一个无监督学习的算法,因此我们首先在一个二维的坐标轴下随机给定一堆点,并随即给定两个质心,我们这个算法的目的就是将这一堆点根据它们自身的坐标特征分为两类,因此选取了两个质心,什么时候这一堆点能够根据这两个质心分为两堆就对了。如下图所示:第二步.根据距离进行分类红色和蓝色的点代表了我            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-02-10 20:44:12
                            
                                178阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            KMeans聚类算法何为聚类?聚类与分类的区别常见聚类算法及KMeans算法算法实现步骤KMeans的优缺点KMeans聚类算法实例完整代码何为聚类?俗话说“物以类聚,人以群分”说的是把相同或相似的东西放在一起比较讨论,志同道合的朋友常常能够相聚在一起把酒言欢。朋友间正是因为有相同的志向和趣味,所以能够走到一起,与人一样,数据挖掘里面的聚类是            
                
                    
                        
                                                            
                                                                        
                                                                                        原创
                                                                                    
                            2022-04-08 17:16:44
                            
                                410阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            K-means聚类 目标:基于有限的指标将样本划分为K类 1,随机选定K个值作为初始聚类中心 2,求每个样本与K个聚中心的距离,取最近的中心,作为该样本的标记中心3,求各个聚类簇的均值,得出k个新的中心点 如果与旧中心点一样,结束聚类过程 如果与旧中心点不一样,将新的中心点作为聚类中心重复第二步 确            
                
                    
                        
                                                            
                                                                        
                                                                                        原创
                                                                                    
                            2022-05-14 08:59:58
                            
                                433阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            KMeans聚类算法            
                
                    
                        
                                                            
                                                                        
                                                                                        原创
                                                                                    
                            2021-06-05 20:27:39
                            
                                486阅读
                            
                                                                             
                 
                
                             
         
            
            
            
            聚类算法-Kmeans Kmeans算法概述 之前问题,手里有标签,要优化一个东西,写出目标函数,朝目标函数优化。只是不同算法,优化过程不一样。 看上去简单,实际上有很多难点:评估,调参。 监督学习:如果有标签可以交叉验证,recall值,score值,true positive,false neg            
                
                    
                        
                                                            
                                                                        
                                                                                        原创
                                                                                    
                            2021-07-22 09:46:53
                            
                                1315阅读