C-means聚类算法实战 — 地表植被分类/数字聚类 文章目录C-means聚类算法实战 --- 地表植被分类/数字聚类一、C均值算法简介二、sklearn中make_blobs的用法简介三、地表植被分类实验代码及结果四、拓展1.观察当事先设定的聚类数量不够时,C-means(k-means)法的分类结果会发生什么变化。2. 手写k_means算法3.C-means算法,实现数字聚类。 一、C均
Kmeans算法流程从数据中随机抽取k个点作为初始聚类的中心,由这个中心代表各个聚类 计算数据中所有的点到这k个点的距离,将点归到离其最近的聚类里 调整聚类中心,即将聚类的中心移动到聚类的几何中心(即平均值)处,也就是k-means中的mean的含义 重复第2步直到聚类的中心不再移动,此时算法收敛 最后kmeans算法时间、空间复杂度是: 时间复杂度:上限为O(tKmn),下限为Ω(Kmn)其中,
转载
2024-07-16 11:24:28
100阅读
1. Kmeans聚类算法原理 1.1 概述 K-means算法是集简单和经典于一身的基于距离的聚类算法 采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。 该算法认为类簇是由距离靠
转载
2024-08-09 16:06:41
53阅读
关于OpenCV3的KMeans/GMM分割应用C++实现的DEMO–更换证件照片背景作者:Simon Song分割算法的应用1.KMEANS:是一种聚类算法,主要过程: 流程图: 参数k–> 初始化中心点–>根据每个样本与中心的距离,分配聚类编号–>对编号相同的样本,计算新的中心位置–>当距离(D)小于阈值(T)或迭代(Iteration)次数大于迭代次数(C)->
转载
2024-08-09 10:24:23
51阅读
KMeans方法:KMeans是一种无监督的学习方法,对于一个分类问题,我们在输入分类数目之后,需要初始化每个分类的中心位置。用距离度量的方法进行归类,任意一个样本离中心距离越近,就把它归为某类。 步骤一: 假设上图有一个2分类的样本,样本编号分别为1、2,在图中使用“X”表示,距离1样本近的,则把样本标记为1,距离2样本近的,就把样本标记为2,得到如下图:步骤二: 根据分类好的样本重新计算中心点
转载
2024-05-07 09:32:04
94阅读
一、聚宽数据1、聚宽数据1.在聚宽数据这个页面可以看到聚宽平台集成好的各大类数据,如下图,点击可以查看详情与用法 2.但实际上可能有些数据要在API文档里才比较容易能找到,比如龙虎榜数据等。这时用ctrl+f进行网页搜索可以快速搜索需要的数据。 二、几种常用数据的取用方法1、获取指数成分股成分股指数是指从指数所涵盖的全部股票中选取一部分较有代表性的股票作为指数样本,
目标了解如何在OpenCV中使用cv2.kmeans()函数进行数据聚类理解参数输入参数sample:它应该是np.float32数据类型,并且每个特征都应该放在单个列中nclusters(K):结束条件所需的簇数criteria:这是迭代终止标准条件。满足此条件后,算法迭代将停止。实际上,它是3个参数的元组,分别是(type, max_iter, epsilon):type 终止条件的类型,它具
转载
2024-04-06 12:52:08
291阅读
K-means算法算是个著名的聚类算法了,不仅容易实现,并且效果也不错,训练过程不需人工干预,实乃模式识别等领域的居家必备良品啊,今天就拿这个算法练练手。 总结来说,这个算法的步骤如下:1.随机选取样本中的K个点作为聚类中心 2.计算所有样本到各个聚类中心的距离,将每个样本规划在最近的聚类中 3.计算每个聚类中所有样本的中心,并将新的中心代替原来的中心 4.检查新老聚类中心的距离,如果距离超过规定
转载
2024-02-19 21:02:38
93阅读
opencv图像处理之K-means聚类算法opencv图像处理之K-means聚类算法kmeans算法过程与简单的理解基于Opencv的c++代码 opencv图像处理之K-means聚类算法kmeans是非常经典的聚类算法,至今也还保留着较强的生命力,图像处理中经常用到kmeans算法或者其改进算法进行图像分割操作,在数据挖掘中kmeans经常用来做数据预处理。opencv中提供了完整的km
转载
2024-07-21 07:41:43
73阅读
一、聚类算法简介1 认识聚类算法使用不同的聚类准则,产生的聚类结果不同1.1 聚类算法在现实中的应用用户画像,广告推荐,Data Segmentation,搜索引擎的流量推荐,恶意流量识别基于位置信息的商业推送,新闻聚类,筛选排序图像分割,降维,识别;离群点检测;信用卡异常消费;发掘相同功能的基因片段1.2 聚类算法的概念聚类算法: 一种典型的无监督学习算法,主要用于将相似的样本自动归到一个类别中
转载
2024-05-21 15:54:40
10阅读
1、输入原始图片 2、代码实现:#include<opencv2\opencv.hpp>
#include<iostream>
using namespace std;
using namespace cv;
int main() {
Mat src = imread("C:/Users/lzg/Desktop/opencv_test/Project1/1
转载
2023-06-21 22:01:24
141阅读
聚类
聚类分析又称群分析,它是研究(样品或指标)分类问题的一种统计分析方法,同时也是数据挖掘的一个重要算法。
聚类(Cluster)分析是由若干模式(Pattern)组成的,通常,模式是一个度量(Measurement)的向量,或者是多维空间中的一个点。
聚类分析以相似性为基础,在一个聚类中的模式之间比不在同一聚类中的模式之间具有更多的相似性。
&nbs
转载
2024-04-06 08:20:29
119阅读
簇识别给出聚类结果的含义。假定有一些数据,现在将相似数据归到一起,簇识别会告诉我们这些簇到底都是什么。聚类有时也被称作无监督分类。1、K-均值聚类算法它可以发现k个不同的簇,且每个簇的中心采用簇中所含值的均值计算而成。优点:容易实现缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢适用数据:数值型工作流程:首先,随机确定k个初始点作为质心;然后将数据集中的每个点分配到一个簇中,具体来讲,为每个
转载
2024-08-14 12:16:34
39阅读
K-means聚类算法零. 说在前面:什么是特征向量? 用来描述样本点的一组数据,要和我们数学中的向量区别一下,本质来说就是个数组,数组中的每个元素代表从不同角度描述样本点的值。K-means 是我们最常用的基于欧式距离的聚类算法,其认为两个目标的距离越近,相似度越大。 聚类就是对大量末知标注的数据集,按照数据内部存在的数据特征将数据集划分为多个不同的类别,使类别内的数据比较相似,类别之间的数据相
转载
2024-05-14 14:51:54
0阅读
第一部分:学习Mahout必须要知道的资料查找技能:学会查官方帮助文档: 解压用于安装文件(mahout-distribution-0.6.tar.gz),找到如下位置,我将该文件解压到win7的G盘mahout文件夹下,路径如下所示:G:\mahout\mahout-distribution-0.6\docs学会查源代码的注
转载
2024-08-09 17:38:36
75阅读
一、基本理解 一种典型的无监督学习算法,主要用于将相似的样本自动归到一个类别中。在聚类算法中根据样本之间的相似性,将样本划分到不同的类别中,对于不同的相似度计算方法,会得到不同的聚类结果,常用的相似度计算方法有欧式距离法。二、APIklearn.cluster.KMeans(n_clusters=8)参数:n_clusters:开始的聚类中心数
转载
2024-03-20 16:40:04
181阅读
一、聚类:聚类也称之为自动分类,是一种无监督的学习方法。算法的原则是基于度量数据对象之间的相似性或相异性,将数据对象集划分为多个簇;相比较于分类技术,聚类只需要较少的专家知识(领域知识),就可以自动发掘数据集中的群组。二、基本的聚类方法包括:1、划分方法:该方法通常基于距离使用迭代重定位技术,通过将一个对象移入另外一个簇并更新簇心,典型的算法有K-均值算法和K-中心点算法(二者的主要区别在于计算簇
转载
2023-11-09 06:20:04
131阅读
文章目录机器学习—python 实现网格聚类算法,子空间聚类 CLIQUE算法(pyclustering)一、基于网格聚类原理二、算法实现(一) CLIQUE 算法1. 前言2. 算法过程3. 示例代码参考资料 机器学习—python 实现网格聚类算法,子空间聚类 CLIQUE算法(pyclustering)聚类算法很多,包括基于划分的聚类算法(如:kmeans),基于层次的聚类算法(如:BIR
转载
2024-05-11 14:38:52
162阅读
聚类方法归类:划分法、基于模型、基于密度、层次法、基于网格模型参数:需要求出来的目标隐含参数:不需要求,但如果知道会有利于求出目标基于分割的聚类一、K-Means算法步骤1.随机初始化几个点(可随意设置)2.将其余各点根据到初始点的距离,分配到这些点上,形成初始分类3.找到每个类的中心点(到类内其它点距离均值最小的点),作为新的初始点4.重复2、3步,直到中心点不再变化(或变化很小)算法复杂度:O
转载
2024-04-22 11:22:20
49阅读
PAM算法的原理: 选用簇中位置最中心的对象,试图对n个对象给出k个划分;代表对象也被称为是中心点,其他对象则被称为非代表对象;最初随机选择k个对象作为中心点,该算法反复地用非代表对象来代替代表对象,试图找出更好的中心点,以改进聚类的质量;在每次迭代中,所有可能的对象对被分析,每个对中的一个对象是中心点,而另一个是非代表对象。对可能的各种组合,估算聚类结果的质量;一个对
转载
2024-06-11 21:55:48
61阅读