#-*- coding: utf-8 -*- ''' Created on Oct 12, 2010 Decision Tree Source Code for Machine Learning in Action Ch. 3 @author: Peter Harrington ''' from math import log import operator #训练数据集 def
一.什么是分类算法分类(Categorization or Classification)就是按照某种标准给对象贴标签(label),再根据标签来区分归类。分类是事先定义好类别 ,类别数不变 。分类器需要由人工标注的分类训练语料训练得到,属于有指导学习范畴。二.决策树算法 1.概述决策树(decision tree)——是一种被广泛使用的分类算法。相比贝叶斯算法决策树的优势在于构造过程
1. 决策树分类算法原理1.1 概述决策树(decision tree)——是一种被广泛使用的分类算法。相比贝叶斯算法决策树的优势在于构造过程不需要任何领域知识或参数设置在实际应用中,对于探测式的知识发现,决策树更加适用 1.2 算法思想通俗来说,决策树分类的思想类似于找对象。现想象一个女孩的母亲要给这个女孩介绍男朋友,于是有了下面的对话:   &nbsp
介绍分类问题,主要介绍决策树算法、朴素贝叶斯、支持向量机、BP神经网络、懒惰学习算法、随机森林与自适应增强算法分类模型选择和结果评价。总共7篇,欢迎关注和交流。  这篇先介绍分类问题的一些基本知识,然后主要讲述决策树算法的原理、实现,最后利用决策树算法做一个泰坦尼克号船员生存预测应用。一、分类基本介绍  物以类聚,人以群分,分类问题只古以来就出现我们的生活中。分类是数据挖掘中一个重要的分支,在各
原创 2023-05-12 21:57:52
154阅读
决策树(Decision Tree)是在已知各种情况发生概率的基础​上,通过构成决策树来求取净现值的期望​值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。
决策树 (decision tree) 是一种常用的有监督算法决策树算法有很多类型,其中最大的差别就是最优特征选择的方法不同。最优特征指的是,在每个结点处,如何选择最好的特征(属性)对样本进行分类,这里最佳的意义即经过这步划分,能使分类精度最好,直到这棵能准确分类所有训练样本。通常特征选择的方法有信息增益、信息增益比、基尼指数等,对应 3 种最常用的决策树实现算法,分别是 ID3 算法、C4.
转载 2023-06-29 14:36:58
176阅读
决策树是最经典的机器学习模型之一。它的预测结果容易理解,易于向业务部门解释,预测速度快,可以处理类别型数据和连续型数据。本文的主要内容如下:信息熵及信息增益的概念,以及决策树的节点分裂的原则;决策树的创建及剪枝算法;scikit-learn中决策树算法的相关参数;使用决策树预测泰坦尼克号幸存者示例;scikit-learn中模型参数选择的工具及使用方法;聚合(融合)算法及随机森林算法的原理。注意:
转载 2023-08-07 14:25:21
105阅读
1.决策树 决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。由于这种决策分支画成图形很像一棵的枝干,故称决策树。在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。Entropy = 系统的凌乱程度,使用算法ID3, C
定义分类决策树是一种描述对实例进行分类的树形结构。决策树由结点和有向边组成。结点有两种类型:内部结点和叶结点。内部结点表示分类的一个特征或者属性,叶结点表示实例属于某一个类。内部结点将特征划分为互不相交的部分。算法思想决策树的本质是从训练数据集中归纳出一组分类规则。即从数据集中对特征进行选择,然后按照这些特征的值,将数据集划分为互不相交的部分。信息增益在信息论和概率统计中,熵是表示随机变量不确定性
决策树算法是一种归纳分类算法,它通过对训练集的学习,挖掘出有用的规则,用于对新集进行预测。在其生成过程中,分割时属性选择度量指标是关键。通过属性选择度量,选择出最好的将样本分类的属性。 决策树分类算法,包括ID3算法、C4.5算法和CART算法。都属于贪婪算法,自顶向下以递归的方式构造决策树。 ID3算法实例分析第1步计算决策属性的熵——经验熵第2步计算条件属性的熵——条件经验
文章目录前言1 决策树的基本流程2 决策树的属性划分2.1 信息增益(ID3算法)2.2 C4.5算法(信息增益比)2.3 CART算法(基尼指数)3 决策树的减枝处理4 决策树中的连续值和缺失值5 多变量的决策树6 sklearn中的决策树总结 前言决策树(decision tree):是一种基本的分类与回归方法,此处主要讨论分类决策树。 但是对于决策树回归,跟决策树分类差不多,是在决策树
决策树一 、概述二、决策树的准备工作2 特征选择2.1香农熵2.2信息增益2.3数据集的最佳切分方式2.4按照给定列切分数据集三、递归构建决策树四、决策树的存储五、决策树分类效果 一 、概述决策树: 是有监督学习的一种算法,并且是一种基本的分类与回归的方法。 决策树分为分类和回归,本章主要是分类。二、决策树的准备工作决策树的构建分为三个过程:特征选择、决策树的生成、决策树的剪枝1 原理:
决策树(DecisionTree)又称为判定,是运用于分类的一种树结构。当中的每一个内部结点(internalnode)代表对某个属性的一次測试,每条边代表一个測试结果,叶结点(leaf)代表某个类(class)或者类的分布(classdistribution),最上面的结点是根结点。决策树分为分...
转载 2014-08-23 15:54:00
431阅读
2评论
决策树分类过程和人的决策过程比较相似,就是先挑“权重”最大的那个考虑,然后再往下细分。比如你去看医生,症状是流鼻涕,咳嗽等,那么医生就会根据你的流鼻涕这个权重最大的症状先认为你是感冒,接着再根据你咳嗽等症状细分你是否为病毒性感冒等等。决策树的过程其实也是基于极大似然估计。那么我们用一个什么标准来衡量某个特征是权重最大的呢,这里有信息增益和基尼系数两个。ID3算法采用的是信息增益这个量。根据《统计
实习了一段时间,接触了一些数据挖掘、机器学习的算法,先记录下来方便以后的复习回顾: 一:决策树概念 决策树可以看做一个树状预测模型,它是由节点和有向边组成的层次结构。中包含3中节点:根节点、内部节点、叶子节点。决策树只有一个根节点,是全体训练数据的集合。中每个内部节点都是一个分裂问题:指定了对实例的某个属性的测试,它将到达该节点的样本按照某个特定的属性进行分割,并且该节点的每一个后继
决策树(DecisionTree)又称为判定,是运用于分类的一种树结构。当中的每一个内部结点(internalnode)代表对某个属性的一次測试,每条边代表一个測试结果,叶结点(leaf)代表某个类(class)或者类的分布(classdistribution),最上面的结点是根结点。决策树分为分...
转载 2014-11-12 11:15:00
134阅读
转载 2017-09-04 15:45:00
163阅读
    决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。由于这种决策分支画成图形很像一棵的枝干,故称决策树。在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。Entropy(熵) = 系统的凌乱程度
决策树算法 如何能够基于既有的数据来进行分类和回归?决策树是解决这类问题的机器学习模型。 解决思路是:通过样本特征的三个数字特征:1)满足特征值的样本数量;2)1)样本的分类各自数量有多该少;3)总的样本数量,来作为input参数,通过构建/选择的模型就计算出来该特征的指标,对于ID3而是信息增益,
转载 2019-12-26 20:38:00
330阅读
2评论
文章目录1.决策树原理2.决策树优缺点3.CART算法4.CART算法实现5. 应用实例--泰坦尼克号数据集5.1 数据集获取5.2 数据描述5.3 代码实例 1.决策树原理决策树算法重点就在于“决策”和“”这两个概念,顾名思义决策树是基于树结构来进行决策的,这也恰恰是人们在遇到问题时进行问题梳理的一种很自然的处理机制。决策树的目标是建立分类和回归模型,核心目标是决策树的生长和决策树的修剪。对
转载 2023-07-29 15:38:55
79阅读
  • 1
  • 2
  • 3
  • 4
  • 5