人笨, 绘制树形图那里的代码看了几次也没看懂(很多莫名其妙的(全局?)变量), 然后就自己想办法写了个import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties
def getTreeDB(mytree):
"""
利用递归获取字典最大深度, 子叶数目
:param m
转载
2023-09-01 07:57:32
87阅读
决策树是一种主要应用于数据分类场景的算法。它是一个树形结构,其中每个节点代表要素,每个边缘代表所做出的决策。从根节点开始,我们继续评估分类特征,并决定遵循特定的优势。每当有新数据点出现时,都会反复应用相同的方法,然后在研究所有必需的特征或将其应用于分类方案时得出最终结论。因此,决策树算法是一种监督学习模型,用于预测具有一系列训练变量的因变量。示例我们将获取kaggle提供的药物测试数据。第一步,我
转载
2023-07-01 09:09:21
141阅读
1. 引言 决策树(decision tree)是一种基本的分类和回归方法,由于其采用的是一种树形的结构,因此,具有很强的解释性和计算速度,也正是因为这些特点,使得决策树在很多行业都得到了应用,比如风控行业等。决策树的建模过程一般分为三个步骤:特征选择、决策树的生成和决策树的剪枝,根据这三个步骤所采用的规则,衍生出了很多不同的模型,比较经典的有Quinlan在1986年提出的ID3算法和19
转载
2023-06-20 20:51:34
315阅读
1、剪枝由于悲观错误剪枝 PEP (Pessimistic Error Pruning)、代价-复杂度剪枝 CCP (Cost-Complexity Pruning)、基于错误剪枝 EBP (Error-Based Pruning)、最小错误剪枝 MEP (Minimum Error Pruning)都是用于分类模型,故我们用降低错误剪枝 REP
转载
2024-08-17 09:11:56
94阅读
决策树一、了解决策树 决策树(Decision Tree)是一类常见的机器学习算法,属于非参数的监督学习方法,主要用于分类和回归,也可以用于特征提取。 决策树就是一棵树(很像流程图),其内包含一个根节点,若干内部节点和若干叶子结点。树的最高层是就是根节点,包含样本全集。内部节点代表对应的一个特征的测试,每个节点包含的样本根据测试的结果被划分到子节点中,即树的分支代表该特征的每一个测试结果。每一
转载
2024-04-10 05:12:13
341阅读
文章目录一、决策树二、构建工作2.1 特征选择2.1.1 香农熵2.1.2 信息增益2.2 剪枝操作2.2.1预剪枝2.2.2后剪枝三、代码讲解3.1构建数据集3.2建立完整决策树3.3计算信息熵3.4计算信息增益3.5调用classify手写分类器3.6调用matlab使树可视化3.7启动类3.7运行结果四、使用Graphviz可视化决策树4.1 安装Pydotplus4.2 安装Grphvi
转载
2023-10-06 19:06:19
404阅读
文章目录第四步:递归创建字典树第四步的子步: 优化第五步 做画出树图像的准备工作5.1定义结点并定义结点和箭头绘制函数5.2在结点之间填充属性的特征的文本5.3获取该字典树的深度和叶子结点个数 第四步:递归创建字典树构建决策字典树用到的最基本的思想是递归 在构建过程中:我们需要用到第一步和第三步的函数,通过第三步得到的最好的划分方式不断的作为当前树的根标签,并将第一步划分的子数据集作为下层使用,
转载
2024-02-14 23:05:56
39阅读
# Python决策树入门
决策树是一种经典的机器学习模型,广泛用于分类和回归问题。它的基本原理是通过对特征的分裂,将数据集划分成不同的子集,从而形成一棵树状结构。本文将介绍如何使用Python构建决策树,并通过代码示例来展示其基本使用方法。
## 决策树的基本概念
决策树由节点(node)、边(edge)和叶子(leaf)组成。每个节点代表一个特征的分裂,每条边代表一个特征值,叶子节点则表
# 使用Python绘制决策树图的完整指南
作为一名刚入行的小白,学习如何使用Python绘制决策树图是一个很好的开始。决策树是一种常见的机器学习算法,帮助我们进行分类和回归。下面,我将为你提供实现过程的完整指导。
## 流程概述
首先,让我们查看实现决策树图的具体步骤。我们将使用一个表格来展示这些步骤。
| 步骤 | 描述 | 代码示例
原创
2024-08-18 04:12:13
66阅读
某公司希望举办一个展销会以扩大市场,选择北京、天津、上海、深圳作为候选会址。获利情况除了会址关系外,还与天气有关。天气可分为晴、多云、多雨三种。通过天气预报,估计三种天气情况可能发生的概率为0.25、0.50、0.25,其收益(单位:人民币万元)情况见下表。使用决策树进行决策的结果为(61)。 (61)A.北京B.天津C.上海D.深圳 答案:B (2008上)某电子商务公司要从A地向B地的用户发送
转载
2023-11-09 19:37:05
121阅读
前言本篇内容为第六章内容,决策树模型。 为便于阅读,我将文章内容分为以下几个板块:基础知识实验内容拓展研究心得体会其中,各板块的介绍如下:基础知识
包含关于本章主题的个人学习理解,总结的知识点以及值得记录的代码及运行结果。实验内容
这是本篇的主题实验部分,也是老师发的实验内容,在电脑上(jupyter notebook)运行成功之后导出为markdown格式。其中,主标题为每一章的小节
转载
2024-05-05 07:09:07
97阅读
训练集有多大?数据集小:可选择高偏差/低方差的分类器。(低偏差/高方差的分类器(LR)更加容易过拟合)数据集小:选择低偏差/高方差的分类器。这样可以训练出更加准确的模型。Logistic回归(Logistic Regression, LR)1、使用LR可以快速搭建出一个模型来(也不需要考虑样本是否相关),如果模型效果不怎么样,也可以得到一个基准。2、如果想要通过调节概率阈值来分类的话,使用LR更加
转载
2024-04-05 12:46:58
189阅读
上一节我们学习knn,kNN的最大缺点就是无法给出数据的内在含义,而使用决策树处理分类问题,优势就在于数据形式非常容易理解。决策树的算法有很多,有CART、ID3和C4.5等,其中ID3和C4.5都是基于信息熵的,也是我们今天的学习内容,主要是根据通过信息熵划分数据集,再进入递归构造决策树的过程。1. 信息熵熵最初被用在热力学方面的,由热力学第二定律,熵是用来对一个系统可以达到的状态数的一个度量,
“点亮”风险应对的一盏明灯项目风险应对时,你有没有经常在多个应对方案之间拿不定主意?又或者在多个应对方案中不知道重点在哪?本文将通过决策树分析法开启一些风险应对的“灵感”。初 识所谓的决策树分析,是在不确定因素的背景下,对可能出现的风险定量分析,用来作出有利决策的一个工具。通过在若干备选方案中对不同分支事件的产生的发展路径分析发生概率及产生的风险(包括威胁和机会),计算每条路径净值,根据预期收益选
转载
2024-01-22 20:16:58
307阅读
数据:14天打球情况
特征:4种环境变化,outlook观察,temperature温度,humidity湿度,windy刮风
目标:构造决策树
根据四种特征决策play
划分方式:4种
问题:谁当根节点呢?
依据:信息增益
在历史数据中(14天)有9天打球,5天不打球,所以此时的熵应为:
关于log的底,选取什么都可以,但是要统一
4个特征逐一分析,先从outlook特征开始
转载
2024-04-08 00:00:31
46阅读
信息增益 导入模块:from math import log
import operator 计算给定数据集的香农熵: def calcShannonEnt(dataSet):
numEntries = len(dataSet)
lableCounts = {}
for featVec in dataSet:
currentLable = featVec[
转载
2024-04-23 10:02:28
1291阅读
决策树算法1.算法概述2.算法种类3.算法示例4.决策树构建示例5.算法实现步骤6.算法相关概念7.算法实现代码8.算法优缺点9.算法优化 1.算法概述决策树算法是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法。分类算法是利用训练样本集获得分类函数即分类模型(分类器),从而实现将数据集中的样本划分到各个类中。分类模型通
转载
2023-06-20 20:51:44
216阅读
决策树的优缺点优点:1.计算复杂度不高(对比KNN),顾运算较快 2.结果容易可视化(即书中可视化部分的代码) 3.对缺失值不敏感,能处理不相关特征的数据 4.适合处理数值型和标称型数据(什么是数值型和标称型?:https://www.jianshu.com/p/500c2918723f)缺点:1.不支持在线学习。即在新样本导入的时候,需要重建决策树。 2.容易过拟合。但是决策森林可以有效减少过拟
转载
2023-10-28 11:14:56
59阅读
阐述决策和相关事件间的相互作用。不能表明风险如何联动发生。
原创
2022-11-09 16:46:01
91阅读
进行科学的决策是项目评估工作中的主要目的之一。科学的决策方法就是对比判断,亦即对拟建项目的备选方案进行比选。但是,决策
原创
精选
2023-11-07 13:47:59
718阅读