Doxygen 概述介绍Doxygen 是具有许多强大功能的文档生成系统,例如:解析程序源以生成实际和准确的文档检查文档是否有错误插入图像和公式使用 Markdown 语法和纯 HTML 格式化精确的文本格式生成多种不同格式的文档OpenCV 库现有文档已转换为 doxygen 格式。安装请查看官方下载和安装页面。一些 linux 发行版也可以提供 doxygen 软件包。生成文档获取
转载
2024-08-29 17:39:06
43阅读
# 使用Java和OpenCV进行图案定位
在计算机视觉的领域中,图案定位是一个重要且实用的任务。在许多应用程序中,例如机器人视觉、自动驾驶、工业自动化等,能够准确识别和定位特定图案的能力至关重要。本篇文章将介绍如何使用Java和OpenCV库来进行图案定位,并提供一段代码示例,帮助读者更好地理解基本概念。
## 什么是图案定位?
图案定位指的是在图像中识别和定位特定的形状、纹理或其他特征。
原创
2024-08-03 09:46:39
108阅读
一、预期目标如下图,要识别图中的国旗,然后框选出来,并且返回国旗的中心位置,效果如下: 彩色图像大小: (400,264) 目标中心位置: (225, 218)二、准备工作 1、将下面的图像另存为在本地,命名为 findflag.jpg 2、新建Python文件 findflag.py,与图像保存在同一目录下。三、开始编写代码1、读取与显示图像#include <stdio.h>
#i
转载
2023-10-16 01:23:43
43阅读
基于vs2015+opencv3.3的简易的车牌定位直接上代码#include<opencv2\opencv.hpp>
#include<iostream>
using namespace cv;
using namespace std;
int areas;
//该函数用来验证是否是我们想要的区域,车牌定位原理其实就是在图片上寻找矩形,我们可以用长宽比例以及面积来验证是否
转载
2024-04-16 14:33:10
104阅读
## 使用Java和OpenCV检测文本的完整指南
对于刚入行的小白来说,使用Java和OpenCV进行文本检测可能看起来有些复杂,但只要按照步骤进行操作,你会发现其实并不难。本文将通过流程图和代码注释,帮助你轻松实现文本检测的功能。
### 整体流程
以下是实现Java OpenCV文本检测的主要步骤:
| 步骤 | 描述 |
|-------
# 实现Java OpenCV文字识别定位
## 介绍
作为一名经验丰富的开发者,我将教你如何实现Java OpenCV文字识别定位。这个过程需要一些基本的知识,但我会尽力解释清楚每一个步骤。
### 流程概述
首先,让我们来看一下实现这个任务的整体流程。下面是一个表格,展示了每个步骤,以及需要做的事情。
| 步骤 | 描述 |
| --- | --- |
| 1 | 加载图像 |
| 2
原创
2024-06-08 05:06:05
62阅读
opencv是一个很强大的机器视觉库,利用它我们可以开发出丰富多彩的使用项目。近日,我在研究一个图中物体定位系统。本程序用的是OpenCV2.4.9,附带OpenCV3.0。程序中的原图为我随手拍的一张图片图中有三个物体,都是蓝色的,我首先取原图的蓝色通道变为灰度图灰度图经过中值滤波后可以得到去噪后的图片根据原图的蓝色通道和红色通道的大概取值范围,我们可得到比较满意的二值图为了去掉物体中少量的黑色
转载
2023-11-16 14:41:52
318阅读
当今,由于数字图像处理和计算机视觉技术的迅速发展,越来越多的研究者采用摄像机作为全自主用移动机器人的感知传感器。这主要是因为原来的超声或红外传感器感知信息量有限,鲁棒性差,而视觉系统则可以弥补这些缺点。而现实世界是三维的,而投射于摄像镜头(CCD/CMOS)上的图像则是二维的,视觉处理的最终目的就是要从感知到的二维图像中提取有关的三维世界信息。简单说来就是对机器人周边的环境进行光学处理
模板匹配轮廓发现及绘制轮廓凸包轮廓周围绘制矩形或圆形1.模板匹配归一化后的模板匹配算法:在API中对应模板匹配算法的定义:模板匹配算法API:具体实现://模板匹配
#include<opencv2/opencv.hpp>
#include<math.h>
#include<iostream>
using namespace cv;
using namesp
转载
2023-11-30 20:50:27
100阅读
OpenCV单目视觉定位(测量)系统The System of Vision Location with Signal CameraAbstract:This passage mainly describes how to locate with signalcamera,which bases on OpenCV library.Key words: OpenCV; Locate;Signalc
转载
2023-12-17 17:38:57
85阅读
最近方向定下来是双目立体视觉,主要是做重建这块的研究。大致过程是图像获取->摄像机标定->特征提取->匹配->三维重建,当然开始可以进行图像预处理,矫正,后期可以进行点云的进一步处理,如渲染表面使其更接近于现实物体。 图像获取相对来说比较简单,用相机拍摄目标物(大型场景或特定小型的室内物体)。但有两点需要注意: 1、双目重建所需的图像一般为两张,角度相差不应过大
转载
2024-04-06 12:10:52
88阅读
目标跟踪就是识别移动目标的过程,并且跨帧跟踪这些目标,为了跟踪视屏中的目标,首先要做的就是识别出可能包含目标的区域。目前有很多视频目标跟踪的方法:当跟踪所有移动目标时,帧之间的差异很重要当跟踪移动的手时,基于皮肤颜色的均值漂移方法最好当跟踪对象知道的时候,模板匹配更好1.基本的运动检测import cv2
import numpy as np
camera = cv2.VideoCapture(
转载
2024-02-26 12:27:16
557阅读
Vitis HLS 图像处理平台搭建在 2019.2 以上的版本中AMD-Xilinx去除了对 OpenCV 的库函数的直接支持,需要我们手动搭建一个OpenCV的环境(主要是仿真环境),这一步虽然对综合不影响,但是对于算法的功能验证还是不方便,所以这一步对于使用OpenCV进行图像处理还是很重要的一步。今天这一步主要分成几部:第一步,安装所需要的文件(开源)第二步,设置好环境变量第三步,本地编译
转载
2024-04-23 10:34:20
31阅读
# Python文本定位教程
## 1. 整体流程
下面是实现Python文本定位的整体流程示意图:
```mermaid
sequenceDiagram
participant 开发者
participant 小白
开发者->>小白: 解释需求和目标
开发者->>小白: 提供步骤和代码示例
小白->>开发者: 讨论问题和寻求帮助
开发者->>
原创
2023-09-29 19:21:21
38阅读
# 如何使用Python定位文本
作为一名经验丰富的开发者,我很高兴能够教会你如何使用Python定位文本。在这篇文章中,我将为你介绍整个流程,并提供每个步骤所需的代码和注释。让我们开始吧!
## 流程概述
在开始编写代码之前,我们需要明确整件事情的流程。下面是一个简单的流程表格,说明了我们将如何实现Python定位文本。
| 步骤 | 描述 |
| ---- | ---- |
| 步骤1
原创
2024-01-13 09:00:35
45阅读
1. 知识点算术操作;像素算术操作。2. NumPy算术操作 和 OpenCV像素运算2.1 加法2.1.0 cv.add 函数cv.add(src1,src2[,dst[,mask[,dtype]]])2.1.1 代码测试读取图片butterfly和lena;获取两张图片[0,100]位置的像素值;使用加法、np.add、cv.add进行算术操作。import cv2 as cv
import
转载
2024-08-17 10:28:50
115阅读
相机标定规范及opencv实现
一、标定规范: 对于张正友相机标定的标定规范,版本也有很多,我这里只写一下我个人使用的方法和遇到的问题以及解决办法。 1. 标定的棋盘格一定要选黑白间隔的,而且不要有边框,就白色底色上话黑白格就可以,如果有边框的棋盘格,可能会检测不到角点。 2. 拍摄棋盘格的时候,要保证棋盘格大概占据视野范围的三分之二,最少不能少于
转载
2024-04-01 00:00:17
77阅读
好久没写了,最近在做一个教授给的任务,任务要求就是使用华硕的Xtion pro 这个设备(和微软的Kinect差不多)来识别一个一个的小机器人的位置和角度。做之前什么都不知道,上网查了好多资料,但是中文的资料较少,所以写点东西出来一是给自己记录,而是方便以后研究这个东西的童鞋。首先介绍一下思路:Aruco是一个做显示增强技术的库,但是我只要它的识别坐标和角度的功能OPENNI2 相当于是个驱动
转载
2024-03-07 22:10:09
133阅读
备注:OpenCV版本 2.4.10在数据的挖掘和分析中,最基本和首要的任务是对数据进行分类,解决这个问题的常用方法是机器学习技术。通过使用已知实例集合中所有样本的属性值作为机器学习算法的训练集,导出一个分类机制后,再使用这个分类机制判别一个新实例的属性,并且可以通过不间断的学习,持续丰富和优化该分类机制,使机器具有像大脑一样的思考能力。常用的分类方法有决策树分类、贝叶斯分类等。然而这些方法存在的
转载
2024-08-02 12:01:06
35阅读
以下程序的目的很简单:就是在屏幕空间中查找视图质心坐标。然后用这个坐标来定位粘贴靶位点。# Finds view centroid coordinates in screen space.
logging.info(' > finding projected point...')
view_arr = np.array(view.convert('L'))
scree
转载
2024-01-20 01:33:16
90阅读