红黑树特点:1.每一个节点要么是红色,要么是黑色; 2.根节点必须是黑色; 3.每个叶子节点【NIL】是黑色; 4.每个红色节点的两个子节点必须是黑色; 5.任意节点到每个叶子节点的路径包含相同数量的黑节点;红黑树场景,图片:详解1.红黑树为空把插入节点作为根节点,并把节点设置为黑色;2.插入节点的父节点为黑节点,直接插入;3.插入的节点的父节点为红节点叔叔节点存在且为红节点 1.将p和S设置为黑            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-07-23 09:14:38
                            
                                11阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            唉 规整规整 进阶目录 1. 红黑树 -- 特性 (1) 每个节点或者是黑色,或者是红色。 (2) 根节点是黑色。 (3) 每个叶子节点是黑色。 [注意:这里叶子节点,是指为空的叶子节点!] (4) 如果一个节点是红色的,则它的子节点必须是黑色的。 (5) 从一个节点到该节点的子孙节点的所有路径上包            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2017-11-30 15:12:00
                            
                                133阅读
                            
                                                                                    
                                2评论
                            
                                                 
                 
                
                             
         
            
            
            
            图解红黑树 目录图解红黑树一、红黑树的五条规则二、红黑树的三种变换2.1.变色2.2.左旋转2.3.右旋转三、红黑树的插入操作3.1.情况13.2.情况23.3.情况33.4.情况43.5.情况53.6.案例插入10插入9插入8插入7插入6插入5插入4插入3插入2**插入1**四、红黑树的删除操作 一、红黑树的五条规则红黑树除了符合二叉搜索树的基本规则外,还添加了以下特性:规则1:节点是红色或黑色            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-08-11 21:40:01
                            
                                128阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            1.项目搭建 1:创建一个maven 带骨架webapp的项目
2:创建表:book表(你所要增删改查的表)    并且使用idea 连接数据库(方便生成实体类)
3.导包(pom文件 dependencies下所有的包) (记得刷新maven)(记得刷新maven)(记得刷新maven)
4,复制resources目录下所需要的文件
修改XxxxMapper 为你需要的名字
5.检查jdbc.p            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-06-15 17:13:56
                            
                                304阅读
                            
                                                                             
                 
                
                             
         
            
            
            
            2020-10-08目前代码只记录了插入过程和插入之后的恢复过程代码,删除过程代码还在整理.package com.lsx.tree;
public class RedBlackTree {
    //红色,默认用红色
    private final int R = 0;
    //黑色
    private final int B = 1;
    private Node ro            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-08-31 21:12:22
                            
                                43阅读
                            
                                                                             
                 
                
                             
         
            
            
            
            一、红黑树介绍1、R-B Tree概念红黑树(Red Black Tree,简称R-B Tree) 是一种自平衡二叉查找树,它虽然是复杂的,但它的最坏情况运行时间也是非常良好的,并且在实践中是高效的: 它可以在O(log n)时间内做查找,插入和删除,这里的n 是树中元素的数目。红黑树是特殊的二叉查找树,意味着它满足二叉查找树的特征:任意一个节点所包含的键值,大于等于左孩子的键值,小于等于右孩子的            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-01-16 00:04:47
                            
                                18阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            在2.7 节基础上,这一节实现了用户的增删改查操作。完整工程代码:链接: https://pan.baidu.com/s/1zSGMvSQa-ihwEN5pP4vW6w 提取码: dpw8工程目录结构如下:1、添加/修改用户页面在webapp下新建目录user,用于存放用户相关的页面。添加和修改使用的是同一个页面,通过url中的参数控制是否是修改操作。后台通过是否传递了id进行判断新增还是修改。新            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-07-24 17:31:19
                            
                                21阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            Java数组的定查改增删操作定义声明创建初始化声明的同时初始化先声明,再初始化查找修改增加 & 删除 定义定义包括声明、创建和初始化三个过程。声明声明,就是向编译器说明新变量的类型和名字,不实际分配内存。int[] array;上面这句,说明新变量的数据类型是int型的数组,变量名是array。二维数组也是一样的。int[][] arrays;创建创建,就是通过new命令在内存中开辟一块            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-02-19 09:45:10
                            
                                17阅读
                            
                                                                             
                 
                
                             
         
            
            
            
            本篇博客导图 简介&我的理解R-B Tree 红黑树简介-3个特性红黑树是二叉查找树的一种,与AVL平衡二叉树相差不大,也是左小右大的数据存储结构,重点在于查找数据,同样是O(height)的时间复杂度。相对于AVL树的靠高度平衡,红黑树是靠颜色平衡的,而为了维持接下来的几个特性,使得它在插入或者删除操作以后必须进行旋转和重新着色才可以保持红黑树特质. 它主要有以下几种特性(虽然太过形式化            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-08-12 10:57:24
                            
                                48阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            红黑树(red-black-tree)是许多“平衡”搜索树的一种,它可以保证在最坏情况下基本动态集合操作的时间复杂度为O(lgn)。除遍历外,其余的方法的时间复杂度都为O(lgn),如INSERT, SEARCH, MAXIMUM, MINIMUM, DELETE等。本章 将依次介绍一些比较重要的方法,并赋予其Java代码的实现。详细的红黑树理论,可以参考《算法导论》中P174-192。注:下面几            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-08-23 21:16:48
                            
                                85阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            目录一、准备工作二、准备数据代码三、存放MySQL驱动jar包四、编程步骤 五、代码实现1.增代码执行结果2.改代码执行结果3.查代码执行结果4.删代码执行结果 一、准备工作下载MySQL驱动jar包,资源直达:二、准备数据创建所需的数据库及表代码#创建数据库
CREATE DATABASE jdbc;
use jdbc;
#创建student表
CREATE TABLE St            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-10-03 23:08:23
                            
                                94阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            package tree;
import jdk.nashorn.internal.ir.CallNode;
import java.util.Random;
public class RBTree {
    private RBTree.Node root = null;
    private enum Color {RED, BLACK}
    private enum Ch            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-05-29 16:49:23
                            
                                57阅读
                            
                                                                             
                 
                
                             
         
            
            
            
            EntityManager 是用来对实体Bean 进行操作的辅助类。他可以用来产生/删除持久化的实体Bean,通过主键查找实体bean,也可以通过EJB3 QL 语言查找满足条件的实体Bean。实体Bean 被EntityManager 管理时,EntityManager跟踪他的状态改变,在任何决定更新实体Bean 的时候便会把发生改变的值同步到数据库中。当实体Bean 从EntityManage            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2016-03-07 11:52:00
                            
                                0阅读
                            
                                                                             
                 
                
                             
         
            
            
            
            壹,定义成员变量和成员方法首先,我们要定义成员变量和成员方法,其中要提供对应的setxxx()方法
   和getxxx()方法 ,来存取类中的属性。“xxx”为属性的名称,
        例如:package com.soft.bean;
            //定义成员变量和成员方法
           public class User {
           private in            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-07-07 16:46:57
                            
                                108阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
             index.html  -登录->stulist.jsp (index.html传递到LoginServlet,进行登录检测及写入session,NO返回index.html界面,OK 跳转到stulist.jsp)stulist.jsp 实现对学生的增删改查及分页.(stulist.jsp检测是否有session,以及student列表中是否有学生信息,没有sessi            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-06-28 14:47:00
                            
                                286阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            目录1 特征描述1.1 性质1.2 与2-3树的对应关系1.3 结点2 平衡化2.1 左旋2.2 右旋3 插入操作3.1 向2-结点插入新键(可能旋转3-结点)3.2 向3-结点插入新键(必然拆分4-结点)4 两个重要的颜色变换4.1 向3-结点插入新键时颜色反转4.2 每次插入操作后根节点重设为黑5 Java代码实现 1 特征描述1.1 性质含有红黑链接的二叉查找树;红链接均为左链接;没有任何            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-09-02 07:56:56
                            
                                43阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            1.首先添加学生类2.再实现增删查改 在编程中遇到的小问题:1.case语句中代码重复的话,可以注释掉,程序依然会向下执行2.编写查询时,要考虑没有学生的情况3.编写增加和修改和查询时,要以唯一识别的学号进行操作4.学号是唯一的,可通过遍历集合中的序号与输入键盘中的学号进行比较 项目截图:运行截图:程序源代码:Student.java package Students;
pu            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-10-06 21:57:03
                            
                                194阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            文章目录代码框架添加(12种情况)修复性质4(添加在父节点为红色的情况)LL(RR)两种LR(RL)两种上溢(四种)Uncle是红色添加代码删除删除——red节点删除——black节点(3情况)删除——拥有一个red节点的black节点删除——black叶子节点,sibling为black(方法是借兄弟)删除——black叶子节点,sibling为black(兄弟借不了,父节点下来合并)删除——            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-04-21 18:55:52
                            
                                55阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
             目 录?一. CRUD?二. 新增(Create)?如何修改MySQL配置:?三. 查询(Retrieve)?1. 全列查询?2. 指定列查询?3. 查询带有表达式?4. 起别名查询?5. 去重查询?6. 排序查询?7. 条件查询?8. 分页查询?四. 修改(Update)?五. 删除(Delete)  ?一. CRUDCRUD : Create,Retrieve,Update,Del            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-08-29 20:03:39
                            
                                333阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            # 如何在Java中实现红黑树
红黑树是一种自平衡的二叉搜索树,具有较好的性能特征,可广泛应用于各种数据处理中。本文将指导你如何在Java中实现红黑树的基本结构和功能。
## 整体流程
为实现红黑树,我们可以遵循以下步骤:
| 步骤 | 描述                                   |
|------|------------------------------