12月11日,本学期第四次“清新书院·数理统计学习小组”在清华大学新闻与传播学院(宏盟楼)环球资源厅顺利举行。新闻与传播学院2020级博士生王怡欢作为领学人,为在场的同学们介绍了抽样分布(卡方分布、t分布、F分布)、参数估计(点估计、区间估计)、假设检验等相关知识,带领在场同学们探索数理统计的世界。 概率论 → 数理统计课程开始,王怡欢带领大家回顾了概率论与数理统计的联系与区别。 在此基础
1.估计  估计是什么呢?简单的说,就是用样本代替总体进行统计推断的方法。   一个最基础的例子是正态总体的参数估计问题。如果,如何估计和呢? 统计学一般会介绍两种估计方法:极大似然估计和估计。总体条件: 样本条件: = Op(1) ;1.1 OLS估计OLS估计是估计的一个特例。OLS估计的公式为:由于和无关,则其中是总体条件,对应的样本条件为:,得到: 另一种推导方法:1.
21、请简要说说EM算法。@tornadomeet,本题解析来源:有时候因为样本的产生和隐含变量有关(隐含变量是不能观察的),而求模型的参数时一般采用最大似然估计,由于含有了隐含变量,所以对似然函数参数求导是求不出来的,这时可以采用EM算法来求模型的参数的(对应模型参数个数可能有多个),EM算法一般分为2步:  E步:选取一组参数,求出在该参数下隐含变量的条件概率值;  M步:结合E步求出的隐含变
导读:针对异步电机单矢量模型预测转矩控制(MPTC)存在的转矩脉动较大和开关频率在整个速度域范围内不固定的问题,本期文章主要介绍一种基于广义双矢量的异步电机MPTC控制策略。如果需要文中的仿真模型,可以关注微信公众号:浅谈电机控制,获取。控制策略将基本电压矢量组合扩展到广义双矢量,将基本电压矢量组合选取与作用时间计算分两次模型预测转矩控制处理,在每个控制周期先选择两个基本电压矢量,再计算其作用时间
转载 2024-01-03 14:55:29
99阅读
# Python中的广义估计 在统计学中,参数估计是一种估计总体特征的方法。其中,广义估计是一种常用的参数估计方法,它利用的估计量来估计参数。Python作为一种功能强大的编程语言,也提供了广义估计的实现。本文将介绍广义估计的基本原理,并给出Python代码示例。 ## 广义估计的原理 广义估计是一种以的估计量作为参数估计的方法。在广义估计中,我们通过选择合适
原创 2024-06-16 05:20:46
225阅读
1.项目背景广义线性模型(Generalized Linear Model,简称GLM)是一种广泛应用于回归分析和分类问题的统计模型。它将线性模型与非线性变换相结合,可以适应各种类型的数据。本项目通过GLM回归算法来构建广义线性回归模型。2.数据获取本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:编号 变量名称描述1x12x23x34x45x56x67x78x89x910x1011
本文展示了如何通过广义方法和广义经验似然来估计模型。对这两种方法的理论方面进行了简要讨论,并通过经济学和金融学中的几个例子介绍了R语言。自Hansen ( 1982 ) 以来,广义 (GMM) 已成为应用经济学和金融学许多领域的重要估计程序。) 介绍了两步 GMM (2SGMM)。它可以看作是许多其他估计方法的概括,例
原创 2022-07-25 13:36:20
4319阅读
本文展示了如何通过广义方法和广义经验似然来估计模型。对这两种方法的理论方面进行了简要讨论
原创 2022-07-25 13:40:53
10000+阅读
本文展示了如何通过广义方法和广义经验似然来估计模型。对这两种方法的理论方面进行了简要讨论,并通过经济学和金融学中的几个例子介绍了R语言。介绍自Hansen ( 1982 ) 以来,广义 (GMM) 已成为应用经济学和金融学许多领域的重要估计程序。) 介绍了两步 GMM (2SGMM)。它可以看作是许多其他估计方法的概括,例如最小二乘法 (LS)、工具变量
原创 2022-11-03 09:38:02
288阅读
     估计简单来讲就是之前我们提到辛钦大数定律的实践版本,辛钦大数定律中所提到的样本k阶依概率收敛到总体的k阶。     正是这个公式代表了估计的强大之处,通过不同的k可以列出不同的方程。(样本k阶存在),根据线性代数的相关知识,未知数的个数等于方程数个数的时候,系数行列式满秩。我们就可以将
# 广义回归 (Generalized Method of Moments, GMM) 的概述与应用 在经济学与统计学中,广义回归(GMM)是一种常用的估计方法,用于在模型中存在内生性或异方差性时,提供稳健的参数估计。GMM的核心思想是使用样本来估计模型参数,这使得它在许多情况下比传统的最小二乘法更有效。本文将介绍GMM的基本概念以及如何在Python中实现这一方。 ## GMM的基本
原创 9月前
166阅读
# Python广义估计的实现 ## 介绍 广义估计是统计学中一种常用的参数估计方法,它通过最大化样本与理论之间的差异来估计参数的值。在Python中,我们可以使用SciPy库中的`scipy.stats`模块来实现广义估计。 ## 流程 下面是实现Python广义估计的一般流程: | 步骤 | 描述 | | ---- | ---- | | 1. | 导入所需的库和模块 |
原创 2023-07-14 04:02:14
584阅读
首先我们来看下什么是参数估计 那么参数估计问题又是什么? 参数估计分为两大类,一类是点估计,还有一类是区间估计,点估计分为估计和最大似然估计,就比如说估计降雨量,预计今天的降雨量如果是550mm就是点估计,如果是500-600mm就是区间估计点估计的主要任务就是去寻求位置参数的点估计量或者说是点估计值,我们可以通过估计和最大似然估计来求下面再简单看下估计我们可以用样本估计总体,用样本
原文链接:http://tecdat.cn/?p=24016摘要面板向量自回归(VAR)模型在应用研究中的应用越来越多。虽然专门用于估计时间序列VAR模型的程序通常作为标
原创 2021-10-23 10:57:08
10000+阅读
原文链接:http://tecdat.cn/?p=24016摘要面板向量自回归(VAR)模型在应用研究中的应用越来越多。虽然专门用于估计时间序列VAR模型的程序通常作为标准功能包含在大多数统计软件包中,但面板VAR模型的估计和推断通常用通用程序实现,需要一些编程技巧。在本文中,我们简要讨论了广义GMM
原创 2021-10-23 17:03:34
9248阅读
摘要面板向量自回归(VAR)模型在应用研究中的应用越来越多。虽然专门用于估计时间序列VAR模型的程序通常作为标准功能包含在大多数统计软件包中,但面板VAR模型的估计和推断通常用通用程序实现,需要一些编程技巧。在本文中,我们简要讨论了广义GMM)框架下面板VAR模型的模型选择、估计和推断,并介绍了一套Stata程序来方便地执行它们。一、简介时间序列向量自回归 (VAR) 模型起源于宏观计量经
原创 2022-11-10 11:58:04
388阅读
拓端数据部落公众号 摘要 最近我们被要求撰写关于广义GMM的研究报告,包括一些图形和统计输出。 面板向量自回归(VAR)模型在应用研究中的应用越来越多。虽然专门用于估计时间序列VAR模型的程序通常作为标准功能包含在大多数统
原创 2023-08-14 00:15:11
10000+阅读
估计思路:就是利用样本来估计总体中的相应参数。首先推导涉及相关参数的总体,然后由样本求出样本,以此建立等式。(由样本求出的与总体的建立等式)什么是k阶原点,一阶原点就是我们说的期望。什么是k阶中心,二阶中心就是我们说的方差。极大似然估计        理解:就是根据样本得到一个关于参数的函数,即似然函数L,函数的值就等于样本(这个事件)
转载 2024-07-10 01:51:28
30阅读
0 摘要        张量因子tensor factorization分解方法在时空数据分析领域很受欢迎,因为它们能够处理多种类型的时空数据,处理缺失值,并提供计算效率高的参数估计程序。        然而,现有的张量因子分解方法并没有尝
基本概念 图形表示 线性回归 岭回归 套索回归 广义线性模型 ——  一类预测模型【不是一个】使用输入数据集的特征的线性函数进行建模,并对结果进行预测的方法 线性模型的训练非常快过程也很容易被人理解但,当数据集的特征比较少的时候,线性模型的表现就会相对偏弱 一般公式也就是,模型给出的预测可以看作是输入特征的加权和,而w就代表
  • 1
  • 2
  • 3
  • 4
  • 5