1 测量系统的统计特性 测量系统的统计特性主要包括: 1)GR&R:Gauge Repeatability(precision精度)Reproducibility 测量重复性再现性 2)Correlatio
转载
2023-09-11 20:32:33
4853阅读
ndc到底是什么含义?为了便于大家理解,我用下图表述ndc的含义,表示某测量系统可以把过程变差有效区分成5个组,即ndc=5。也就是过程变差包含测量系统的测量误差正态分布(GRR)的个数。在这儿,我强调一下此处的GRR的分布宽度不是六倍的GRR标准方差(σm),而是4.24倍的σm,具体推导过程我不在这儿展开,如果谁有兴趣,可以私信给我。
转载
2024-03-12 20:31:35
0阅读
1.数据分析方法分类业务数据分析师(对数学建模的要求较低)、数据挖掘(对业务与数学建模的要求较高)、大数据分析(需要一定的编程能力)。层层进阶2.职位进阶3.数据分析结果数据可视化4.数据分析的流程在业务理解中要多问问题,了解需求,知道问题的核心。可以看书籍《学会提问》。5. 围绕数据分析师的三大类工作内容
原创
2022-04-15 21:35:17
1588阅读
不用任何公开参考资料,估算今年新生儿出生数量 解答:1)采用两层模型(人群画像人群转化):新生儿出生数=Σ各年龄层育龄女性数量各年龄层生育比率 2)从数字到数字:如果有前几年新生儿出生数量数据,建立时间序列模型(需要考虑到二胎放开的突变事件)进行预测 3)找先兆指标,如婴儿类用品的新增活跃用户数量X表示新生儿家庭用户。Xn/新生儿n为该年新生儿家庭用户的转化率,如X2007/新生儿2007位为20
转载
2023-08-21 09:13:32
633阅读
当我们谈论IT服务管理(ITSM)世界中的大数据时,这里有两个非常不同的概念: • IT为业务提供的大数据工具/服务:对关键的业务运营数据进行数据索引。 • IT运营中的大数据:处理和利用复杂的IT运营数据。大数据中的业务运营服务在竞争日益激烈,数据驱动的世界中,企业管理者都在寻找能够有效管理和解释业务数据(尤其是大数据)的方法。数字化的业务操作,如:电子商务网站和银行移动APP,它们产生了大量的
转载
2023-10-03 08:52:17
206阅读
大数据技术和数据分析有什么关系大数据经过多年发展形成了一个完整的产业链和技术链,大数据的产业链是围绕技术链来打造的,而大数据的技术链则围绕数据价值化这个中心来展开,涉及到数据的采集、存储、安全、分析、呈现和应用,那么大数据技术和数据分析有什么关系呢?1、从大数据的技术链来看:数据分析是其中的重要一环,也是目前大数据价值化的核心环节,所以很多人也把大数据就理解为数据分析了。虽然数据分析比较重要,但是
转载
2024-01-13 20:01:43
252阅读
2022年数据与分析有哪些新趋势?今年数据和分析主要趋势:1.激活多样性和活力使用自适应AI系统推动增长和创新同时应对全球市场的波动; 2.增强人员能力和决策以提供由业务模块化组件创建的丰富的、情境驱动的分析; 3.将信任制度化以大规模地实现数据和分析的价值。管理AI风险并实施跨分布式系统、边缘环境和新兴生态系统的互联治理。现在应该根据关键数据和分析技术趋势对于业务优先事项的紧迫性和匹配性来监测、
转载
2024-01-11 13:38:43
94阅读
1. 什么是数据分析1) 数据分析发展背景进入到 21 世纪以后,伴随着互联网的迅速发展,大数据应运而生,越来越多的数据被不断的挖掘出来,形成了“数据为王”的时代。就拿我们自己举例子,比如你的购物习惯、你的喜好等等,这些都会组成数据,对你购物习惯的分析会帮助购物平台更精准的推荐商品,这只是数据分析应用的冰山一角,它还可以应用到金融领域、交通领域、畜牧业等等。随着数据规模越来越庞大,单靠人力重复的脑
转载
2023-07-10 15:24:47
138阅读
数据分析之MySQL学习参考课程:戴师兄数据分析原始幕布格式笔记:戴师兄数据分析启蒙课:SQL基础语法+运行原理+云端数据库搭建.opml,提取码: jb27基础语法语法结构:select--from--where--group by--having--order by--limit运行顺序:from--where--group by--having--order by--limit--selec
转载
2023-09-21 14:20:23
189阅读
二、数据预处理—数据清洗及特征处理我们拿到的数据通常是不干净的,所谓的不干净,就是数据中有缺失值,有一些异常点等,需要经过一定的处理才能继续做后面的分析或建模,所以拿到数据的第一步是进行数据清洗,本章将学习缺失值、重复值、字符串和数据转换等操作,将数据清洗成可以分析或建模的样子。1、缺失值观察、检索与处理载入库与数据1.1、观察:查看每一个特征缺失值的个数#方法一
pd.info()#方法二
df
转载
2024-08-26 00:02:59
108阅读
当所要分析的样本特征过多时,我们可以采用主成分分析即PCA(principal component analysis)对数据进行降维和可视化。代码引自《python机器学习》PCA算法及其实现PCA算法的步骤如下: 1)对原始维数据集做标准化处理。 2)构造样本的协方差矩阵。 3)计算协方差矩阵的特征值和相应的特征向量。 4)选择与前个最大特征值对应的特征向量,其中为新特征空间的维度。 5)通过前
转载
2024-02-03 22:52:10
122阅读
对于一个ML问题,解决思路通常是:拿到数据后怎么了解数据(可视化) 选择最贴切的机器学习算法 定位模型状态(过/欠拟合)以及解决方法 大量极的数据的特征分析与可视化 各种损失函数(loss function)的优缺点及如何选择首先拿到数据要进行***数据分析***数据准备->数据清洗->数据重构->数据分析 典型的重构就是归一化可以利用降维算法来实现数据的处理,用更少的特征描述原
转载
2023-08-31 13:00:09
393阅读
目录一、Apache Pig概述二、Apache Pig架构1)架构图2)Apache Pig组件1、Parser(解析器)2、Optimizer(优化器)3、Compiler(编译器)4、Execution engine(执行引擎)三、Apache Pig安装1)下载Apache Pig2)配置环境变量3)修改配置四、Apache Pig执行模式1)本地模式2)Tez 本地模式3)Spark 本
转载
2023-12-20 21:04:58
199阅读
简介二代测序最常用的质量评估软件是FastQC,多样本时可进一步结合MultiQC。此外速度超快的fastp也特别推荐,而且包括质量评估、质量控制等功能,可以说是国产软件之光,详见下方详细教程:数据的质量控制软件——FastQC整合QC质控结果的利器——MultiQC极速的FASTQ文件质控+过滤+校正fastp三代纳米孔(Nanopore)测序数据与二代Illumina测序数据相比,具有读长更长
转载
2023-07-14 17:36:45
483阅读
做RFM分析的时候要知道RFM分析的数据格式有两种: 一种是交易数据,也就是每次交易占用一行,关键变量是客户ID、交易日期和交易金额; 另一种是客户数据,就是每个客户占用一行,关键变量是客户ID、交易金额、交易次数和最近交易日期。为了保证数据的准确性,建议采用交易数据格式进行分析,实际上交易数据是可以整理成为客户数据的,而客户数据是无法还原为交易数据的。我从我们后台导出来的就是客户数据,我这里
转载
2023-10-24 00:04:35
163阅读
究竟什么是数据分析师?其定位和价值是什么?近年来互联网经济的蓬勃发展可谓给数据大规模累积提供了沃土,专家大拿们对大数据技术与应用的讨论和研究热度不减,对数据中隐含的深层价值及其应用的重视程度越来越高,更多人开始注重视量化分析、科学及高效地决策,这个过程中越来越多的企业就产生了对专业化的分析人才的需求。简单通用地讲,数据分析师是一类能够在建立明确分析目标基础上对数据进行搜集、加工、分析并挖掘出有价值
转载
2023-11-17 19:14:06
265阅读
注:部分文字来自官网,感觉翻译过来就变味了,所以直接上英文了。 谷歌分析(Google Analytics,以下简称GA),按我的理解就是谷歌提供的一个数据分析统计的平台。 GA除了进行传统的网页统计之外,现在也支持对移动应用的统计和分析了, Google Analytics 发布的
目录 设想和目标计划资源变更管理设计/实现测试/发布团队的角色,管理,合作总结: 本次项目的github地址设想和目标我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述?我们的软件主要是为了解决物理实验报告的生成以及数值的处理,后期还会有物理实验题库。我们的典型用户就是北航需要选修物理实验的学生。我们达到目标了么(原计划的功能做到了几个? 按照原计划交付时间交付
转载
2023-10-30 17:44:33
87阅读
商业智能提供的解决方案能够从多种数据源获取数据并且能够把各种数据转化成同一格式数据进行存储,最终达到让用户可以快速访问解读数据,为用户分析和制定决定提供有效的数据支持。可以人为的把商业智能分为以下几层:数据源层:公司日常工作中会存在多种格式的数据,如文本文档,excel文件,access数据库文件,SQL Server数据库文件等。数据转换层:由于数据源存在多样化,为了方便分析,需要对它们进行一定
转载
2024-02-29 10:28:50
393阅读
近两年来,大数据发展浪潮席卷全球。研究机构IDC预测,全球大数据与分析市场规模将由2015年的1220亿美元,在5年间成长超过50%,并在2019年底达到1870亿美元的规模。资本也敏锐地追逐着高增长市场。数据显示,美国在2013年大数据领域的新创公司就获得了36亿美金(200多亿人民币)的投资,硅谷大数据公司Palantir更是获得高达200亿美金的估值。对于被大数据概念包围的人们来说,理解大数
转载
2023-08-03 20:57:05
146阅读