前言 scikit-learn是基于Python的一个机器学习库,你可以在scikit-learn库中选择合适的模型,使用它训练数据集并对新数据集作出预测。对于初学者来说,有一个共同的困惑:怎么使用scikit-learn库中的模型做预测?本文的目的就是解答这个困惑,手把手地教你使用机器学习模型。分以下三点内容:针对特定的预测如何选择合适的模型什么是分类预测什么是回归预测废话不多说,让我们开始吧!
转载
2024-03-18 12:25:14
20阅读
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。?个人主页:Matlab科研工作室?个人信条:格物致知。更多Matlab仿真内容点击?智能优化算法 神经网络预测 雷达通信 无线传感器 &n
原创
2023-03-10 16:24:10
191阅读
使用Python训练回归模型并进行预测回归分析是一种常见的统计方法,用于确定不同变量间的相互关系。在Excel中可以通过数据分析菜单中的回归功能快速完成。本篇文章将介绍在python中使用机器学习库sklearn建立简单回归模型的过程。1. 准备工作首先是开始前的准备工作,在创建回归模型的过程中我们需要使用以下几个库文件,他们分别为sklearn库,numpy库,pandas库和matplotli
转载
2023-07-24 07:58:52
226阅读
1 内容介绍在本文中,基于有限增量进化和基于距离的剪枝对在线模型动态系统开发了一种进化一般回归神经网络。此外,建议使用基于方差的方法来调整 GRNN 中的平滑参数以适应在线应用。将所提出的模型与不同类型的动态神经网络进行了比较。比较中使用了具有高斯白噪声的非线性基准测试动态离散系统。在预测误差和适应所需时间方面对结果进行了比较,比较结果表明,所提出的模型比任何其他模型都更准确、更快。2 部分代码c
原创
2022-09-08 10:11:01
607阅读
回归预测 | MATLAB实现PSO-GRNN多输入单输出回归预测
原创
2022-12-15 15:16:44
587阅读
⛄ 内容介绍一种基于CNNSVM的软件缺陷预测方法,从软件历史开发数据中提取软件数据特征,将获得的数据特征进行归一化处理;对归一化后的缺陷样本的数据特征进行SMOTE样本扩充;构建CNNSVM模型,正常样本和扩充后的缺陷样本一起输入到CNNSVM模型中,先由CNN网络进行卷积,下采样和扁平化处理,完成特征提取后,输入到SVM层进行缺陷预测;采用RMSProp优化器,基于binary_cross_e
转载
2024-04-08 10:34:11
49阅读
通常是由输入层、模式层、求和层和输出层构成。输入层作用是将样本数据传送到模式层且不运行计算,输入向量的维
原创
2022-09-24 01:02:31
140阅读
动机BN是在小批数据中用均值和方差归一化,能够保证很深的网络能够收敛,但是BN需要足够大的batch size,比较小的batch对批量数据的统计特征估算不准确,降低BN的batch size 就会提升模型误差。Group的思想有很多:AlexNet将模型部署到两块GPU;ResNeXt测试了depth、width、groups对网络的效果,建议在相似计算消耗的前提下,较大的group
转载
2024-06-28 15:53:53
46阅读
综述GBDT(Gradient Boosting Decision Tree) 又叫 MART(Multiple Additive Regression Tree),是一种迭代的决策树算法,该算法由多棵决策树组成,所有树的结论累加起来做最终答案。它在被提出之初就和SVM一起被认为是泛化能力较强的算法。 GBDT中的树是回归树(不是分类树),GBDT用来做回归预测,调整后也可以用于分类。 G
转载
2024-05-05 07:01:54
52阅读
分析师通常希望基于自变量的值在多元回归中预测因变量的值。我们之前曾讨论在只有一个自变量的情况下如何进行这种预测。使用多元线性回归进行预测的过程与此非常相似。要使用多元线性回归模型预测因变量的值,我们遵循以下三个步骤:1、获得回归参数b0,b1,b2,...,bk的估计值^b0,^b1,^b2,...,^bk。2、确定自变量^X1i,^X2i,…,^Xki的假定值。3、使用公式 计算因变
转载
2024-05-11 13:45:09
65阅读
1 模型遗传算法和广义回归神经网络结合起来,构建出GA-GRNN方法,利用遗传算法的全局寻优和广义回归神经网络结构简单的特点,自动搜索和匹配最优光滑因子参数,实现数据精准分类.通过与实际分类情况比较,表明GA-GRNN法在实现高精度预测的同时,能够有效避免训练数据预测精度的降低.2 部分代码%% ga-grnn%% 1.初始化环境clc;clear;close all;format compact
原创
2021-10-16 13:10:03
844阅读
1 简介为实现精准施肥"减施增效"的数字化农业施肥技术,本文基于并运用了鲸鱼算法,对广义回归神经网络(GRNN)进行了结合与改进,并构建作物广义回归神经网络(GRNN)结合遗传算法的预测施肥量模型.通过采集得到的数据样本会被用来输入MATLAB进行仿真和实验验证.仿真和实验结果表明,改进后的基于鲸鱼算法的GRNN神经网络模型比BP神经网络具有更少的输入参数,能更好地反映施肥量与诸多影响因素之间的关
原创
2022-01-02 16:23:04
366阅读
1 简介支持向量机基本上是最好的有监督学习算法了。最开始接触SVM是去年暑假的时候,老师要求交《统计学习理论》的报告,那时去网上下了一份入门教程,里面讲的很通俗,当时只是大致了解了一些相关概念。这次斯坦福提供的学习材料,让我重新学习了一些SVM知识。我看很多正统的讲法都是从VC 维理论和结构风险最小原理出发,然后引出SVM什么的,还有些资料上来就讲分类超平面什么的。这份材料从前几节讲的logist
转载
2024-04-16 10:34:33
69阅读
sklearn.linear_model中的LinearRegression可实现线性回归 LinearRegression 的构造方法:
转载
2023-05-22 23:39:39
440阅读
1 简介为实现精准施肥"减施增效"的数字化农业施肥技术,本文基于并运用了麻雀搜索算法,对广义回归神经网络(GRNN)进行了结合与改进,并构建作物广义回归神经网络(GRNN)结合麻雀搜索算法的预测施肥量模型.通过采集得到的数据样本会被用来输入MATLAB进行仿真和实验验证.仿真和实验结果表明,基于麻雀搜索算法的GRNN神经网络模型比BP神经网络具有更少的输入参数,能更好地反映施肥量与诸多影响因素之间
原创
2021-12-26 19:13:14
744阅读
线性回归从零开始问题解读这里要先详细解读一下我们前文提到的问题,如何实现我们的梯度下降的迭代?我们自然是使用最最常用的BP神经网络了。它是一种按照误差逆向传播算法训练的多层前馈神经网络,是应用最广泛的神经网络模型之一 。看起来很复杂是吧,那我们简而言之就是:前向传播,计算预测值,反向传播更新权重,不断迭代知道达到要求。这里具体过程我就不推导了,其实很简单,大家甚至可以手算一下,可以看这个UP主的视
转载
2024-08-21 09:49:27
71阅读
# 使用Python实现回归预测的完整指南
在数据科学领域,回归分析是一种重要的技术,用于预测一个变量(因变量)相对于另一个或多个变量(自变量)的关系。本文将带您深入了解如何在Python中实现回归预测。
## 文章结构
1. 数据准备
2. 数据拆分
3. 模型选择与训练
4. 预测与评估
5. 结论
### 流程概述
在开始编码之前,我们可以将整个过程分解为几个步骤。以下是每一步所需
原创
2024-08-11 03:47:36
74阅读
目录 一、线性回归简介 二、梯度下降算法 三、梯度下降代码实现 四、梯度下降算法求解线性回归 五、线性回归代码实现一、线性回归简介 线性回归来自于统计学的一个方法。什么是回归呢?我认为回归就是预测一系列的连续的值,而与之相对的分类就是预测一系列的离散的值。比如预测用户的性别、是否患病、西瓜的大小等等都是用分类算法来进行预测。而员工的月收
转载
2023-12-10 10:13:32
103阅读
回归分析的概念回归分析是一种预测性的建模技术,它研究的是因变量(目标)和自变量(预测器)之间的关系。这种技术通常用于预测分析,时间序列模型以及发现变量之间的因果关系。例如操作人员不安全操作与安全事故数量之间的关系,最好的研究方法就是回归。 回归分析估计了两个或多个变量之间的关系,比如说我们要去估计一家公司营收额的情况,调查显示营收额的增长速度是本地经济增长的3倍。我们使用根据当前和过去的信息来预测
转载
2024-01-29 01:31:47
64阅读
下面是一个线性回归模型的 Python 代码示例:
转载
2023-05-22 23:07:02
327阅读