要读取数据库的记录,首先需要建立一个数据库,并输入一些数据。数据库建立完毕后,由Flash向ASP提交请求,ASP根据请求对数据库进行操作后将结果返回给Flash,Flash以某种方式把结果显示出来。1.启动Access2003,新建一名为“userInfo.mdb”的数据库,并在该数据库中新建一名为“userInfoTable”的表,该表中含有三个字段:“userName”、“passWord”
转载
2023-07-25 10:07:33
120阅读
# 实现“flash data 数据分析”流程
## 1. 确定数据源
首先,确定从哪里获取数据,可以是数据库、API接口、本地文件等。
## 2. 数据清洗
对获取到的数据进行清洗,包括去除重复值、处理缺失值等。
## 3. 数据分析
利用数据分析工具对清洗后的数据进行分析,得出需要的结果并展示。
## 4. 可视化
将分析结果以可视化的方式展示,比如图表、报表等。
```markdo
原创
2024-05-11 05:25:49
84阅读
不用任何公开参考资料,估算今年新生儿出生数量 解答:1)采用两层模型(人群画像人群转化):新生儿出生数=Σ各年龄层育龄女性数量各年龄层生育比率 2)从数字到数字:如果有前几年新生儿出生数量数据,建立时间序列模型(需要考虑到二胎放开的突变事件)进行预测 3)找先兆指标,如婴儿类用品的新增活跃用户数量X表示新生儿家庭用户。Xn/新生儿n为该年新生儿家庭用户的转化率,如X2007/新生儿2007位为20
转载
2023-08-21 09:13:32
633阅读
当我们谈论IT服务管理(ITSM)世界中的大数据时,这里有两个非常不同的概念: • IT为业务提供的大数据工具/服务:对关键的业务运营数据进行数据索引。 • IT运营中的大数据:处理和利用复杂的IT运营数据。大数据中的业务运营服务在竞争日益激烈,数据驱动的世界中,企业管理者都在寻找能够有效管理和解释业务数据(尤其是大数据)的方法。数字化的业务操作,如:电子商务网站和银行移动APP,它们产生了大量的
转载
2023-10-03 08:52:17
206阅读
1.数据分析方法分类业务数据分析师(对数学建模的要求较低)、数据挖掘(对业务与数学建模的要求较高)、大数据分析(需要一定的编程能力)。层层进阶2.职位进阶3.数据分析结果数据可视化4.数据分析的流程在业务理解中要多问问题,了解需求,知道问题的核心。可以看书籍《学会提问》。5. 围绕数据分析师的三大类工作内容
原创
2022-04-15 21:35:17
1588阅读
大数据技术和数据分析有什么关系大数据经过多年发展形成了一个完整的产业链和技术链,大数据的产业链是围绕技术链来打造的,而大数据的技术链则围绕数据价值化这个中心来展开,涉及到数据的采集、存储、安全、分析、呈现和应用,那么大数据技术和数据分析有什么关系呢?1、从大数据的技术链来看:数据分析是其中的重要一环,也是目前大数据价值化的核心环节,所以很多人也把大数据就理解为数据分析了。虽然数据分析比较重要,但是
转载
2024-01-13 20:01:43
252阅读
时间序列一、定义二、构成要素三、时间序列预测模型3.1 指数平滑法3.2 ARIMA模型3.3霍尔特-温特模型 一、定义时间序列(或称动态数列) 是指将同一统计指标的数值按其发生的时间先后顺序排列而成的数列。时间序列分析的主要目的是根据已有的历史数据对未来进行预测。经济数据中大多数以时间序列的形式给出。根据观察时间的不同,时间序列中的时间可以是年份、季度、月份或其他任何时间形式。二、构成要素1)
转载
2023-08-11 20:43:33
247阅读
当所要分析的样本特征过多时,我们可以采用主成分分析即PCA(principal component analysis)对数据进行降维和可视化。代码引自《python机器学习》PCA算法及其实现PCA算法的步骤如下: 1)对原始维数据集做标准化处理。 2)构造样本的协方差矩阵。 3)计算协方差矩阵的特征值和相应的特征向量。 4)选择与前个最大特征值对应的特征向量,其中为新特征空间的维度。 5)通过前
转载
2024-02-03 22:52:10
122阅读
二、数据预处理—数据清洗及特征处理我们拿到的数据通常是不干净的,所谓的不干净,就是数据中有缺失值,有一些异常点等,需要经过一定的处理才能继续做后面的分析或建模,所以拿到数据的第一步是进行数据清洗,本章将学习缺失值、重复值、字符串和数据转换等操作,将数据清洗成可以分析或建模的样子。1、缺失值观察、检索与处理载入库与数据1.1、观察:查看每一个特征缺失值的个数#方法一
pd.info()#方法二
df
转载
2024-08-26 00:02:59
108阅读
1. 设备型号TF20 场发射透射电镜,配备能谱仪2.原理TEM(Transmission Electron Microscope, 透射电子显微镜) 具有较高的分辨率是半导体失效分析领域最常用的仪器之一,其以高能电子束作为光源,用电磁场作透镜,将经过加速和聚集的电子束投射到非常薄的样品上,电子和样品中的原子因碰撞改变方向,从而产生立体角散射。散射角的大小与样品的密度、厚度相关,因此可以
转载
2023-12-19 15:14:18
162阅读
1. 什么是数据分析1) 数据分析发展背景进入到 21 世纪以后,伴随着互联网的迅速发展,大数据应运而生,越来越多的数据被不断的挖掘出来,形成了“数据为王”的时代。就拿我们自己举例子,比如你的购物习惯、你的喜好等等,这些都会组成数据,对你购物习惯的分析会帮助购物平台更精准的推荐商品,这只是数据分析应用的冰山一角,它还可以应用到金融领域、交通领域、畜牧业等等。随着数据规模越来越庞大,单靠人力重复的脑
转载
2023-07-10 15:24:47
138阅读
一、TuShare简介和环境安装 TuShare是一个著名的免费、开源的python财经数据接口包。其官网主页为:TuShare -财经数据接口包。该接口包如今提供了大量的金融数据,涵盖了股票、基本面、宏观、新闻的等诸多类别数据(具体请自行查看官网),并还在不断更新中。TuShare可以基本满足量化初学者的回测需求 环境安装:pip install tushare。如果是老版本升级,可以用升级
转载
2023-12-09 14:01:58
40阅读
简介二代测序最常用的质量评估软件是FastQC,多样本时可进一步结合MultiQC。此外速度超快的fastp也特别推荐,而且包括质量评估、质量控制等功能,可以说是国产软件之光,详见下方详细教程:数据的质量控制软件——FastQC整合QC质控结果的利器——MultiQC极速的FASTQ文件质控+过滤+校正fastp三代纳米孔(Nanopore)测序数据与二代Illumina测序数据相比,具有读长更长
转载
2023-07-14 17:36:45
478阅读
一、什么是AARRR模型,以及为什么它如此受欢迎?让我们深入了解Dave McClure的模型。AARRR代表:用户拉新Acquisition 用户激活Activation 用户留存Retention 用户推荐Referral 商业收入Revenue二 、RARRA模型是托马斯·佩蒂特Thomas Petit和贾博·帕普Gabor Papp对于海盗指标-AARRR模型的优化。RARRA模型突出了用
转载
2023-10-03 11:30:01
222阅读
2022年数据与分析有哪些新趋势?今年数据和分析主要趋势:1.激活多样性和活力使用自适应AI系统推动增长和创新同时应对全球市场的波动; 2.增强人员能力和决策以提供由业务模块化组件创建的丰富的、情境驱动的分析; 3.将信任制度化以大规模地实现数据和分析的价值。管理AI风险并实施跨分布式系统、边缘环境和新兴生态系统的互联治理。现在应该根据关键数据和分析技术趋势对于业务优先事项的紧迫性和匹配性来监测、
转载
2024-01-11 13:38:43
94阅读
在当下这个大数据时代,数据分析早已不是一个岗位,而是许多从业者的核心竞争力。无论是在医疗、旅游还是互联网行业,甚至不论你是做运营还是研发,掌握数据分析能力都是基本功之一。其实也很好理解,我们的生活和工作早就离不开和各种数据打交道了。那么掌握数据分析能力到底有什么用呢?我们可以来看看。 对于运营性质的工作来说,数据是一切工作的驱动力,数据作为一种度量方式,能真实的反映产品运营的状况,帮助我们进一
转载
2023-11-29 10:34:29
74阅读
对于一个ML问题,解决思路通常是:拿到数据后怎么了解数据(可视化) 选择最贴切的机器学习算法 定位模型状态(过/欠拟合)以及解决方法 大量极的数据的特征分析与可视化 各种损失函数(loss function)的优缺点及如何选择首先拿到数据要进行***数据分析***数据准备->数据清洗->数据重构->数据分析 典型的重构就是归一化可以利用降维算法来实现数据的处理,用更少的特征描述原
转载
2023-08-31 13:00:09
393阅读
数聚智慧决策门户SDP (Smart Decision Platform)是企业级的商业智能数据门户,以信息的民主与集中来改善企业的管理水平,保护企业已有报表与数据分析资产。SDP通过兼容开放的特性、灵活的用户权限配置、便捷的报表访问体验以及高效的互动交流方式,实现企业报表的高度集成、权限管控与协同共享。 数聚智慧决策门户是数聚公司在总结了为多家著名企业实施商业智能BI(Business I
转载
2024-02-06 07:11:11
67阅读
做RFM分析的时候要知道RFM分析的数据格式有两种: 一种是交易数据,也就是每次交易占用一行,关键变量是客户ID、交易日期和交易金额; 另一种是客户数据,就是每个客户占用一行,关键变量是客户ID、交易金额、交易次数和最近交易日期。为了保证数据的准确性,建议采用交易数据格式进行分析,实际上交易数据是可以整理成为客户数据的,而客户数据是无法还原为交易数据的。我从我们后台导出来的就是客户数据,我这里
转载
2023-10-24 00:04:35
163阅读
数据分析一、数据分析——基础1.什么是数据分析1.1数据分析的概念1.2数据分析的应用1.3数据分析方法1.3.1对比分析1.3.2同比分析1.3.3环比分析1.3.4 80/20分析1.3.5 回归分析1.3.6 聚类分析1.3.7时间序列分析1.4数据分析工具1.5数据分析流程二、数据分析——numpy2.1numpy概述2.1.1numpy介绍2.2数据预处理2.2.1数据读写2.2.1.
转载
2023-09-11 17:38:48
43阅读