前言构建多元线性回归模型时,如果能够充分的使用已有变量,或将其改造成另一种形式的可供使用的变量,将在一定程度上提高模型精度及其泛化能力。因为数据集中的名义变量(或叫类别变量)是无法直接使用的,所以虚拟变量(又叫哑元变量)的设置便是非常经典且必须掌握的一步,原理简单,实现优雅,效果拔群。原理趣析至于虚拟变量的官方解释和值得参考的短小精悍的论文集和虚拟变量的深度应用及拓展,笔者都已经打包放在了后台,文
转载
2023-12-29 19:53:15
131阅读
Covariance/Correlation/Variogram简单介绍与区分1.0 Variance方差
定义: 方差是对变异性的一种度量。它的计算方法是取均值的平方偏差的平均值。意义: 表示数据集的扩散程度。数据越分散,方差与均值的关系就越大(方差越大)。公式: (1)总体方差: (2)样本方差 总体方差和样本方差为什么不一样:1.1 standard deviation标准差
定义: 标准偏
转载
2024-08-05 20:47:04
26阅读
关于期望、方差、协方差、协方差矩阵的定义和计算:?期望是线性的。方差(variance)衡量的是对数据x依据它的概率分布采样时,随机变量x的函数值会呈现多大的差异。方差的平方根为标准差(standard deviation)。协方差(covariance)在某种意义上给出了两个变量线性相关性的强度。以下部分内容参考链接:?普通的伯努利分布和二项分布首先,假设我们扔了一个不均匀的硬币,也就是说,一个
转载
2024-06-14 14:33:01
156阅读
一、方差分析1.1 主题因子、水平、单因素方差分析、双因素方差分析、协方差分析二、 基本概念方差分析: 通过检验各总体的均值是否相等来判断分类型自变量对数值型因变量是否有显著影响。因素/因子: 所要检验的对象称为因素或因子。水平/处理: 因素的不同表现称为水平或处理。观测值: 在每个因子水平下得到的样本数据称为观测值。三、 单因素方差分析1.1 概念单因素方差分析: 是用来研究一个控制变量的不同水
转载
2024-05-07 18:51:32
225阅读
多重共线性是使用线性回归算法时经常要面对的一个问题。在其他算法中,例如决策树和贝叶斯,前者的建模过程是逐步递进,每次拆分只有一个变量参与,这种建模机制含有抗多重共线性干扰的功能;后者干脆假定变量之间是相互独立的,因此从表面上看,也没有多重共线性的问题。但是对于回归算法,不论是一般回归,逻辑回归,或存活分析,都要同时考虑多个预测因子,因此多重共线性是不可避免需要面对的,在很多时候,多重共线性是一个普
转载
2024-07-02 20:36:15
86阅读
多因子探索分析与可视化
一、假设检验与方差检验import numpy as np
import scipy.stats as ss
1.正态检验
H0:服从正态分布
H1:不服从
norm_dist=ss.norm.rvs(size=20) #符合标准正态分布的20个数
ss.normaltest(norm_dist) #检
前言探索性数据分析、数据清洗与预处理和多元线性回归模型构建完毕后,为提升模型精度及其稳健性,还需进行许多操作。方差膨胀因子便是非常经典的一步,原理简单,实现优雅,效果拔群。 原理趣析 多重线性回归模型的主要假设之一是我们的预测变量(自变量)彼此不相关。我们希望预测变量与反应变量(因变量)相关,而不是彼此之间具有相关性。如言情剧中的 A 喜欢B,B 却喜欢 C,结果发现 C 其实喜欢 A;而
转载
2023-11-24 15:04:17
199阅读
在实际研究中,确定方差膨胀因子(VIF)的阈值没有固定的规则,而是根据具体的研究背景、数据特性和模型要求来决定。以下是一些因素,研究人员可能会根据这些因素来设定VIF的阈值:1. 研究领域和惯例不同的学科领域可能有不同的共线性容忍标准。例如,在社会科学领域,由于数据往往较为复杂且变量间关联密切,较高的VIF(如10)可能被接受。而在一些需要高精度预测的技术和科学领域,可能更倾向于使用更低的VIF阈
转载
2024-08-15 10:35:09
126阅读
# 方差膨胀因子 (VIF) 在 Python 中的实现
方差膨胀因子(Variance Inflation Factor, VIF)是多重共线性分析中一个重要的工具,它可以帮助我们检测模型中自变量之间的多重相关性。当 VIF 值较高时,表明该自变量与其他自变量有较强的线性关系,从而影响模型的估计性能。在本文中,我们将介绍如何在 Python 中计算 VIF 值,并通过实例展示其应用。
##
原创
2024-08-01 05:31:07
309阅读
第十章 10.1这章会讲什么?10.2 ANOVA背后理论10.2.1 膨胀的错误率:为什么不能直接用t检验比较三组间的差异?10.2.2 关于F值的解释10.2.3 作为回归的ANOVA10.2.4 F比率(F-ratio)的逻辑10.2.5 总平方和SST10.2.6 模型平方和SSM10.2.7 残差平方和SSR10.2.8 均方根10.2.
转载
2024-05-03 14:53:39
154阅读
偏误处理之三 共线性假定SLR.2 解释变量X是确定性变量,不是随机变量,且各解释变量之间无完全多重共线性(相关性)。某两个变量或者多个变量之间相关性太强,或某一个变量能被其他变量线性表示,则存在多重共线性问题。后果:完全共线性下(很少)参数估计量不存在(即某些系数无法估计出来结果)近似共线性下(常见)系数估计量方差很大,影响t检验、F检验可能导致系数经济含义不合理。检验:差膨胀因子VIF是否
转载
2023-12-27 15:43:53
238阅读
多重共线性在进行多重线性回归时,有一个隐含假设为各个自变量之间相互独立;若自变量之间存在线性相关关系,则称存在多重共线性。怎么判断自变量之间存在多重共线性?常用的评价指标有两个:容许度和膨胀因子(VIF)。容许度=1-Rj^2。其中的R是第j个自变量与其余变量进行回归时的判定系数。容许度越接近1,表示多重共线性越弱。膨胀因子:膨胀因子是容许度的倒数。膨胀因子越接近1(膨胀因子理论最小值是1),表示
# R语言分类变量检查方差膨胀因子
## 引言
在统计分析中,方差膨胀因子(Variance Inflation Factor,简称VIF)是用来衡量回归模型中自变量之间的多重共线性程度的指标。在回归分析中,自变量之间的高度相关性会造成模型的不稳定性和不准确性,因此需要进行多重共线性的检验和处理。本文将介绍如何使用R语言对分类变量进行方差膨胀因子的检查。
## 流程图
```mermaid
f
原创
2023-12-27 03:43:56
555阅读
十分经典,原理简单,实现优雅,效果拔群。
原创
2021-11-24 11:17:34
2015阅读
目录前言1. 什么是膨胀卷积?2. 为什么在语义分割任务中需要用膨胀卷积?3. Gridding Effect是什么?3.1 实验一3.2 实验二3.3 实验三4. Hybird Dilated Convolution (HDC)5. 效果对比参考 前言在语义分割任务的编程实现中,通常会用到膨胀卷积(Dilated convolution),或者说是空洞卷积。那么什么是膨胀卷积呢?Griddin
当包含的因子(名义型或解释型因子)是解释变量时,我们关注的重点通常会从预测(建立回归模型)转向组别差异的分析,这种分析法称作方差分析(ANOVA)。ANOVA在各种实验和准实验设计的分析中都有广泛应用。用一个或多个定量变量来拟合和预测另一个定量变量,需要建立回归模型;当分类变量作为解释变量时,通常不会关注预测,而是关注分类变量带来的不同组间的差异,这时用方差分析。1、专业术语 例子:研究不同的治
转载
2023-12-18 19:17:37
120阅读
数学知识扩展期望和方差期望在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。方差方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。方
一、数学概念参考:方差、标准差和协方差三者之间的定义与计算1. 方差方差是各个数据与平均数之差的平方的平均数。在概率论和数理统计中,方差(英文Variance)用来度量随机变量和其数学期望(即均值)之间的偏离程度。在许多实际问题中,研究随机变量和均值之间的偏离程度有着很重要的意义。2. 标准差方差开根号。3. 协方差在概率论和统计学中,协方差用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况
Time will tell.1、列表生成器下面的代码会报错,为什么?class A(object):
x = 1
gen = (x for _ in xrange(10)) # gen=(x for _ in range(10))
if __name__ == "__main__":
print(list(A.gen))答:这个问题是变量作用域问题,在 gen=(x f
在注意力机制文章Attention Is All You Need中,作者在计算dot-product attention时,引入了一个scaled因子,即 之所以引入scaled因子,是让数据符合0均值、方差1的分布。因为qkT内积操作后,数据期望为0、方差为dk,那么softmax梯度会消失。 接下来就开始解释原因。引入期望、方差的定义1、期望 期望计算的是样本的均值,描述一个随机变量的集中位
转载
2024-06-02 23:31:17
61阅读