前言探索性数据分析、数据清洗与预处理和多元线性回归模型构建完毕后,为提升模型精度及其稳健性,还需进行许多操作。方差膨胀因子便是非常经典的一步,原理简单,实现优雅,效果拔群。 原理趣析 多重线性回归模型的主要假设之一是我们的预测变量(自变量)彼此不相关。我们希望预测变量与反应变量(因变量)相关,而不是彼此之间具有相关性。如言情剧中的 A 喜欢B,B 却喜欢 C,结果发现 C 其实喜欢 A;而
转载
2023-11-24 15:04:17
201阅读
第十章 10.1这章会讲什么?10.2 ANOVA背后理论10.2.1 膨胀的错误率:为什么不能直接用t检验比较三组间的差异?10.2.2 关于F值的解释10.2.3 作为回归的ANOVA10.2.4 F比率(F-ratio)的逻辑10.2.5 总平方和SST10.2.6 模型平方和SSM10.2.7 残差平方和SSR10.2.8 均方根10.2.
转载
2024-05-03 14:53:39
159阅读
关于期望、方差、协方差、协方差矩阵的定义和计算:?期望是线性的。方差(variance)衡量的是对数据x依据它的概率分布采样时,随机变量x的函数值会呈现多大的差异。方差的平方根为标准差(standard deviation)。协方差(covariance)在某种意义上给出了两个变量线性相关性的强度。以下部分内容参考链接:?普通的伯努利分布和二项分布首先,假设我们扔了一个不均匀的硬币,也就是说,一个
转载
2024-06-14 14:33:01
156阅读
在实际研究中,确定方差膨胀因子(VIF)的阈值没有固定的规则,而是根据具体的研究背景、数据特性和模型要求来决定。以下是一些因素,研究人员可能会根据这些因素来设定VIF的阈值:1. 研究领域和惯例不同的学科领域可能有不同的共线性容忍标准。例如,在社会科学领域,由于数据往往较为复杂且变量间关联密切,较高的VIF(如10)可能被接受。而在一些需要高精度预测的技术和科学领域,可能更倾向于使用更低的VIF阈
转载
2024-08-15 10:35:09
126阅读
多重共线性在进行多重线性回归时,有一个隐含假设为各个自变量之间相互独立;若自变量之间存在线性相关关系,则称存在多重共线性。怎么判断自变量之间存在多重共线性?常用的评价指标有两个:容许度和膨胀因子(VIF)。容许度=1-Rj^2。其中的R是第j个自变量与其余变量进行回归时的判定系数。容许度越接近1,表示多重共线性越弱。膨胀因子:膨胀因子是容许度的倒数。膨胀因子越接近1(膨胀因子理论最小值是1),表示
# R语言分类变量检查方差膨胀因子
## 引言
在统计分析中,方差膨胀因子(Variance Inflation Factor,简称VIF)是用来衡量回归模型中自变量之间的多重共线性程度的指标。在回归分析中,自变量之间的高度相关性会造成模型的不稳定性和不准确性,因此需要进行多重共线性的检验和处理。本文将介绍如何使用R语言对分类变量进行方差膨胀因子的检查。
## 流程图
```mermaid
f
原创
2023-12-27 03:43:56
555阅读
偏误处理之三 共线性假定SLR.2 解释变量X是确定性变量,不是随机变量,且各解释变量之间无完全多重共线性(相关性)。某两个变量或者多个变量之间相关性太强,或某一个变量能被其他变量线性表示,则存在多重共线性问题。后果:完全共线性下(很少)参数估计量不存在(即某些系数无法估计出来结果)近似共线性下(常见)系数估计量方差很大,影响t检验、F检验可能导致系数经济含义不合理。检验:差膨胀因子VIF是否
转载
2023-12-27 15:43:53
238阅读
多重共线性是使用线性回归算法时经常要面对的一个问题。在其他算法中,例如决策树和贝叶斯,前者的建模过程是逐步递进,每次拆分只有一个变量参与,这种建模机制含有抗多重共线性干扰的功能;后者干脆假定变量之间是相互独立的,因此从表面上看,也没有多重共线性的问题。但是对于回归算法,不论是一般回归,逻辑回归,或存活分析,都要同时考虑多个预测因子,因此多重共线性是不可避免需要面对的,在很多时候,多重共线性是一个普
转载
2024-07-02 20:36:15
86阅读
前言构建多元线性回归模型时,如果能够充分的使用已有变量,或将其改造成另一种形式的可供使用的变量,将在一定程度上提高模型精度及其泛化能力。因为数据集中的名义变量(或叫类别变量)是无法直接使用的,所以虚拟变量(又叫哑元变量)的设置便是非常经典且必须掌握的一步,原理简单,实现优雅,效果拔群。原理趣析至于虚拟变量的官方解释和值得参考的短小精悍的论文集和虚拟变量的深度应用及拓展,笔者都已经打包放在了后台,文
转载
2023-12-29 19:53:15
131阅读
Covariance/Correlation/Variogram简单介绍与区分1.0 Variance方差
定义: 方差是对变异性的一种度量。它的计算方法是取均值的平方偏差的平均值。意义: 表示数据集的扩散程度。数据越分散,方差与均值的关系就越大(方差越大)。公式: (1)总体方差: (2)样本方差 总体方差和样本方差为什么不一样:1.1 standard deviation标准差
定义: 标准偏
转载
2024-08-05 20:47:04
26阅读
一、方差分析1.1 主题因子、水平、单因素方差分析、双因素方差分析、协方差分析二、 基本概念方差分析: 通过检验各总体的均值是否相等来判断分类型自变量对数值型因变量是否有显著影响。因素/因子: 所要检验的对象称为因素或因子。水平/处理: 因素的不同表现称为水平或处理。观测值: 在每个因子水平下得到的样本数据称为观测值。三、 单因素方差分析1.1 概念单因素方差分析: 是用来研究一个控制变量的不同水
转载
2024-05-07 18:51:32
225阅读
一、 异方差性的概念对于模型 Yi??0??1Xii??2X2i????kXki??i i=1,2,…,n同方差性假设为 Var(?i)??2 i=1,2,…,n如果出现 Var(?i)??i2 i=1,2,…,n即对于不同的样本点,随机误差项的方差不再是常数,则认为出现了异方差性。 二、异方差性的后果1.参数估计量非有效2.变量的显著性检验失去意义 3.模型的预测失效 三、异方差性的检验 1.检
转载
2023-10-25 22:12:32
696阅读
多因子探索分析与可视化
一、假设检验与方差检验import numpy as np
import scipy.stats as ss
1.正态检验
H0:服从正态分布
H1:不服从
norm_dist=ss.norm.rvs(size=20) #符合标准正态分布的20个数
ss.normaltest(norm_dist) #检
异方差性–潘登同学的计量经济学笔记 文章目录异方差性--潘登同学的计量经济学笔记异方差对OLS造成的影响异方差--稳健推断一个有效估计量多元回归的一个有效估计量异方差--稳健标准误的适用情况异方差--稳健的F统计量异方差--稳健的LM统计量一般的LM稳健的LM检验异方差性布罗施-帕甘异方差检验总结布罗施-帕甘异方差检验步骤怀特异方差检验更简单的方法总结怀特异方差检验检验异方差的细节问题加权最小二乘
方差分析(Analysis of Variance,简称ANOVA),又称“ 变异数分析”,是R.A.Fisher发明的,用于两个及两个以上 样本均数差别的 显著性检验。 由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。方差分析是从观测变量的方差入手,研究诸多 控制变量中哪些变量是对观测变
Time will tell.1、列表生成器下面的代码会报错,为什么?class A(object):
x = 1
gen = (x for _ in xrange(10)) # gen=(x for _ in range(10))
if __name__ == "__main__":
print(list(A.gen))答:这个问题是变量作用域问题,在 gen=(x f
# 方差膨胀因子 (VIF) 在 Python 中的实现
方差膨胀因子(Variance Inflation Factor, VIF)是多重共线性分析中一个重要的工具,它可以帮助我们检测模型中自变量之间的多重相关性。当 VIF 值较高时,表明该自变量与其他自变量有较强的线性关系,从而影响模型的估计性能。在本文中,我们将介绍如何在 Python 中计算 VIF 值,并通过实例展示其应用。
##
原创
2024-08-01 05:31:07
320阅读
目录:(摘自百度百科)一、基本概念二、类型:1、单因素方差分析2、双因素方差分析3、协方差分析一、基本概念方差分析又称“变异数分析”或“F检验”,用于两个及两个以上样本均数差别的显著性检验。
方差分析的基本原理是认为不同处理组的均数间的差别基本来源有两个:
(1) 实验条件,即不同的处理造成的差异,称为组间差异。用变量在各组的均值与总均值之偏差平方和的总和表示,记作SSb
转载
2024-08-31 22:57:16
57阅读
方差分析(Analysis of Variance,简称ANOVA),又称“ 变异数分析”,是R.A.Fisher发明的,用于两个及两个以上 样本均数差别的 显著性检验。 由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。方差分析是从观测变量的方差入手,研究诸多 控制变量中哪些变量是对观测变
转载
2024-06-06 20:36:51
243阅读
雪晴数据网线性回归一个重要的假设就是残差没有异方差性。简单来说就是残差的方差不会随着响应变量的拟合值而增加。在本篇文章,我会解释为什么检测异方差性是重要的?如何检测模型的异方差性?如果存在,如何通过R代码来纠正这个问题。这个过程有时也被称为残差分析。为什么检测异方差很重要?一旦你建立线性回归模型,通常都要检测残差的异方差性。原因是我们想要检测建立的模型能否解释响应变量Y的一些模式,而它最终是显示在
转载
2023-06-21 18:27:56
1633阅读