ELMO原理介绍一、引言1.1 从Word Embedding到ELMO二、ELMO2.1 ELMO原理2.2 ELMO 训练2.2.1 第一阶段 语言模型进行预训练2.2.2 第二阶段 接入下游NLP任务2.3 ELMO效果 一、引言1.1 从Word Embedding到ELMOWord Embedding:词嵌入。最简单粗劣的理解就是:将词进行向量化表示,实体的抽象成了数学描述,就可以进行
转载
2024-07-10 01:16:41
69阅读
过去几讲里,我们一起为 AI 加上了语音能力。而且相对于大语言模型,语音识别和语音合成都有完全可以用于商业应用的开源模型。事实上,Huggingface 的火爆离不开他们开源的这个 Transformers 库。这个开源库里有数万个我们可以直接调用的模型。很多场景下,这个开源模型已经足够我们使用了。不过,在使用这些开源模型的过程中,你会发现大部分模型都需要一块不错的显卡。而如果回到我们更早使用过的
耗尽两天出坑,整理过程如下,希望对遇到问题的人得到帮助!!!首先nodejs在大模型生态上,坑还是超级多,尤其是对我不熟悉nodejs。我没有从零创建项目,比如用npm init 方法,而是使用的一个开源项目:git clone https://github.com/langchain-ai/langchain-nextjs-template.git基于这个项目本身pnpm dev 页面显示正常,
转载
2024-10-08 13:20:17
454阅读
目录何为嵌入(嵌套,Embedding)特点神经网络中的Embedding可能的应用Ref何为嵌入(嵌套,Embedding)嵌入是从离散对象(例如字词)到实数向量的映射。嵌入是一种相对低维的空间,您可以将高维矢量映射到这种低维空间里。通过使用嵌入,可以让在大型输入(比如代表字词的稀疏矢量)上进行机器学习变得更加容易。试想,在N分类任务中,每个标签是由N长度的one-hot向量组成,其中有许多冗余
转载
2024-05-12 21:37:08
183阅读
一、前言1、记忆性利用手工构造的交叉组合特征来使线性模型具有“记忆性”,使模型记住共现频率较高的特征组合,且可解释性强。这种方式有着较为明显的缺点:首先,特征工程需要耗费太多精力。其次,因为模型是强行记住这些组合特征的,所以对于未曾出现过的特征组合,权重系数为0,无法进行泛化。2、泛化性 为了加强模型的泛化能力,引入了DNN结构,将高维稀疏特征编码为低维稠密的Embedding vector,这种
转载
2024-07-25 08:22:00
1774阅读
Embedding技术概览:1. Graph Embedding简介Word2Vec和其衍生出的Item2Vec类模型是Embedding技术的基础性方法,二者都是建立在“序列”样本(比如句子、用户行为序列)的基础上的。在互联网场景下,数据对象之间更多呈现的是图结构,所以Item2Vec在处理大量的网络化数据时往往显得捉襟见肘,在这样的背景下,Graph Embedding成了新的研究方向,并逐渐
转载
2024-04-22 13:14:42
640阅读
从C端视角来看,58商业将Embedding作为广告的一种理解方式,使我们精确理解C端用户意图,同时理解B端推广提供的能力,使得目标推广以合适的形式触达C端用户。Embedding对文本语义、用户行为进行向量化,通过数学计算表达广告和用户关系,具备易表示、易运算和易推广的特点。今天将从以下几方面来介绍Embedding技术在58商业搜索和推荐场景的实践:58商业流量场景主流Embedding算法介
转载
2024-06-07 22:05:41
136阅读
PowerDesigner的程序破解: 将破解文件pdflm15.dll复制到PowerDesigner的安装路径下。覆盖已有文件。PowerDesigner的类库的导入:将类库解压,然后打开文件夹将里面的所有类库复制到PowerDesigner的安装路径下。-----------------------------------介绍PowerDesigner的五种模型--------
多级缓存0.学习目标1.什么是多级缓存传统的缓存策略一般是请求到达Tomcat后,先查询Redis,如果未命中则查询数据库,如图:存在下面的问题:•请求要经过Tomcat处理,Tomcat的性能成为整个系统的瓶颈•Redis缓存失效时,会对数据库产生冲击多级缓存就是充分利用请求处理的每个环节,分别添加缓存,减轻Tomcat压力,提升服务性能:浏览器访问静态资源时,优先读取浏览器本地缓存访问非静态资
1.基本概念 Lora,英文全称“Low-Rank Adaptation of Large Langurage Models”,直译为大语言模型的低阶适应,这是微软的研究人员为了解决大语言模型微调而开发的一项技术2.作用只要是图片上的特征都可以提取并训练 (1)对人物/物品的脸部特征进行复刻 (2)生成某一特定风格的图像 (3)固定动作特征3.embedding和Lora的区别 embedding
转载
2024-08-01 16:43:44
232阅读
在现代科技发展中,Ollama 模型及其嵌入(Embedding)模型成为自然语言处理领域的一个热点。最近许多工程师和研究者对如何优化这些嵌入模型进行了探讨,意图提升模型性能并解决潜在的问题。本文将详细记录如何解决“ullama 模型Embedding 模型”的过程,涵盖从背景描述到技术原理、架构解析、源码分析等多个维度的内容。
我们首先来看一下背景信息。Ollama 模型通常通过将复杂的文本映
2019年03月24日15:23:32更新: 由于图片经常显示不出来,本文最新链接请点击:://fuhailin.github.io/Embedding/ 博主所有博客写作平台已迁移至:://fuhailin.github.io/ ,欢迎收藏关注。这篇博客翻译自国外的深度学习系列文章的第四篇在深度学习实验中经常会遇Embedding层,然而网络上的介绍可谓是相当含糊。比
转载
2024-07-29 19:06:14
381阅读
前言预训练语言模型在目前的大部分nlp任务中做个微调都能取得不错的一个结果,但是很多场景下,我们可能没办法微调,例如文本聚类,我们更需要的是文本的向量表示;又亦如文本匹配,特别是实时搜索场景,当候选集数量较多时,直接使用ptm做匹配速度较慢。那么如何优雅的使用预训练模型生成文本embedding呢?本文将会从不同的预训练模型与不同的优化方法去介绍文本embedding的生成方式,如有理解错误,欢迎
转载
2024-05-13 10:34:05
144阅读
最近在工作中进行了NLP的内容,使用的还是Keras中embedding的词嵌入来做的。Keras中embedding层做一下介绍。中文文档地址:https://keras.io/zh/layers/embeddings/参数如下:其中参数重点有input_dim,output_dim,非必选参数input_length.初始化方法参数设置后面会单独总结一下。 demo使用预训练(使用百度百科(w
转载
2024-04-19 15:27:29
155阅读
1. 最大期望EM 最大期望(Expectation Maximum)算法是一种迭代优化算法,如果概率模型的变量都是观测变量,那么给定数据,可以直接用最大似然估计法或者贝叶斯估计法去估计模型的参数。但是,当模型含有隐变量时,就不能简单的使用这些估计方法。EM算法就是含有隐变量的概率模型参数估计的最大似然估计法。  
2022年云栖大会上,阿里巴巴集团副总裁、阿里云计算平台事业部负责人贾扬清宣布阿里云一体化大数据平台ODPS全面升级。升级后的ODPS支持统一存储、统一调度、统一元数据的一体化融合架构,支持离线计算(ODPS-MaxCompute)、实时交互式分析(ODPS-Hologres)等引擎,提供机器学习、流式计算等可扩展的计算能力,具备全球领先的技术性能和产品性价比。10月31日,国际事务处理性能委员会
1.简介组织机构:智谱/清华代码仓:https://github.com/THUDM/ChatGLM2-6B模型:THUDM/chatglm2-6b Embedding 模型moka-ai/m3e-base下载:https://huggingface.co/THUDM/chatglm2-6b https://huggingface.co/moka-ai/m3e-base镜像下载:http
目录1. 背景简介2. 前提假设3. 多期 DID 估计量4. Stata 实操4.1 csdid 命令介绍4.2 csdid 命令实操5. R 语言实操5.1 R 包的安装和导入5.2 R 语言的实操展示6. 参考资料7. 相关推文 1. 背景简介双重倍差法 (Difference-in-Differences,DID),是目前实证分析中用于识别因果关系的流行方法之一。标准的 DID 模型将样
转载
2024-09-05 16:15:53
206阅读
TensorFlow Serving 介绍 TensorFlow Serving 是一个用于机器学习模型 serving 的高性能开源库,可以将训练好的模型直接上线并提供服务。其一个重要特性是:它支持模型热更新与自动模型版本管理,这意味着一旦部署 TensorFlow Serving 后,你再也不需要为线上服务操心,只需要关心你的线下模型训练。 TF Serving采用客户端/服
前言上篇讲了文件夹结构,这篇呢我们来聊一聊3D模型的相关内容。我们先来梳理下模型进入游戏的整个工作流程,然后再依次分析有哪些标准与规则。美术在DCC(Digital Content Creation,数字内容创作,游戏行业中是指美术制作数字内容所使用的软件工具)软件中进行模型创作。制作完成后,从DCC软件中导出FBX格式。导入Unity引擎并设置导入的相关选项。生成预设供程序使用。从以上流程我们可