2022年云栖大会上,阿里巴巴集团副总裁、阿里云计算平台事业部负责人贾扬清宣布阿里云一体化大数据平台ODPS全面升级。升级后的ODPS支持统一存储、统一调度、统一元数据的一体化融合架构,支持离线计算(ODPS-MaxCompute)、实时交互式分析(ODPS-Hologres)等引擎,提供机器学习、流式计算等可扩展的计算能力,具备全球领先的技术性能和产品性价比。10月31日,国际事务处理性能委员会
大模型掀起的技术狂热,终究要落于理性繁荣。中国科技圈很久没有出现如此大规模的技术热潮了,这在4月11日的阿里云峰会体现得淋漓尽致,加之阿里巴巴CEO张勇的阿里云首秀,现场人头攒动,能容纳上千人的报告厅一度封闭,行业内外都想找到一些答案。阿里巴巴集团董事会主席兼CEO、阿里云智能集团CEO张勇在云峰会上表示,阿里巴巴所有产品未来将接入“通义千问”大模型,进行全面改造。他认为,面向AI时代,所有产品都
6月23日,国际体系结构领域顶会ISCA 2022刚刚落下帷幕,阿里达摩院在图神经网络计算领域的论文被大会收录,文章开创性地提出了一种全新的硬件架构,可大幅提升图神经网络处理效率,降低一半硬件成本。ISCA、MICRO、HPCA并称为体系结构领域三大顶级会议,ISCA创办于1973年,见证了诸多突破性成果的首次亮相,包括谷歌、英特尔、英伟达等企业在半导体领域的多项技术创新。官方信息显示,ISCA论
一、前言1、记忆性利用手工构造的交叉组合特征来使线性模型具有“记忆性”,使模型记住共现频率较高的特征组合,且可解释性强。这种方式有着较为明显的缺点:首先,特征工程需要耗费太多精力。其次,因为模型是强行记住这些组合特征的,所以对于未曾出现过的特征组合,权重系数为0,无法进行泛化。2、泛化性 为了加强模型的泛化能力,引入了DNN结构,将高维稀疏特征编码为低维稠密的Embedding vector,这种
转载
2024-07-25 08:22:00
1774阅读
Embedding技术概览:1. Graph Embedding简介Word2Vec和其衍生出的Item2Vec类模型是Embedding技术的基础性方法,二者都是建立在“序列”样本(比如句子、用户行为序列)的基础上的。在互联网场景下,数据对象之间更多呈现的是图结构,所以Item2Vec在处理大量的网络化数据时往往显得捉襟见肘,在这样的背景下,Graph Embedding成了新的研究方向,并逐渐
转载
2024-04-22 13:14:42
640阅读
从C端视角来看,58商业将Embedding作为广告的一种理解方式,使我们精确理解C端用户意图,同时理解B端推广提供的能力,使得目标推广以合适的形式触达C端用户。Embedding对文本语义、用户行为进行向量化,通过数学计算表达广告和用户关系,具备易表示、易运算和易推广的特点。今天将从以下几方面来介绍Embedding技术在58商业搜索和推荐场景的实践:58商业流量场景主流Embedding算法介
转载
2024-06-07 22:05:41
136阅读
如何选择适合的公共 DNSDNS 是互联网的基石之一,之前我在博客的 DNS 标签下写了不少关于权威 DNS 的文章,这次写一篇关于递归 DNS(也就是公共 DNS)的文章,从公共 DNS 的必要性、利弊来讲一讲选择公共 DNS 需要关注的事情,以及列举一些当前主流的公共 DNS。是否需要公共 DNS在选择公共 DNS 之前,你需要考虑一个问题:你是否真的需要公共 DNS 么?无论我们是 PPPo
PowerDesigner的程序破解: 将破解文件pdflm15.dll复制到PowerDesigner的安装路径下。覆盖已有文件。PowerDesigner的类库的导入:将类库解压,然后打开文件夹将里面的所有类库复制到PowerDesigner的安装路径下。-----------------------------------介绍PowerDesigner的五种模型--------
Qwen3-Embedding 系列设计得超级灵活!多种尺寸,按需选择: 它提供了三种不同大小的模型(0.6B、中等大小、一
1.基本概念 Lora,英文全称“Low-Rank Adaptation of Large Langurage Models”,直译为大语言模型的低阶适应,这是微软的研究人员为了解决大语言模型微调而开发的一项技术2.作用只要是图片上的特征都可以提取并训练 (1)对人物/物品的脸部特征进行复刻 (2)生成某一特定风格的图像 (3)固定动作特征3.embedding和Lora的区别 embedding
转载
2024-08-01 16:43:44
232阅读
在现代科技发展中,Ollama 模型及其嵌入(Embedding)模型成为自然语言处理领域的一个热点。最近许多工程师和研究者对如何优化这些嵌入模型进行了探讨,意图提升模型性能并解决潜在的问题。本文将详细记录如何解决“ullama 模型Embedding 模型”的过程,涵盖从背景描述到技术原理、架构解析、源码分析等多个维度的内容。
我们首先来看一下背景信息。Ollama 模型通常通过将复杂的文本映
最近在工作中进行了NLP的内容,使用的还是Keras中embedding的词嵌入来做的。Keras中embedding层做一下介绍。中文文档地址:https://keras.io/zh/layers/embeddings/参数如下:其中参数重点有input_dim,output_dim,非必选参数input_length.初始化方法参数设置后面会单独总结一下。 demo使用预训练(使用百度百科(w
转载
2024-04-19 15:27:29
155阅读
前言预训练语言模型在目前的大部分nlp任务中做个微调都能取得不错的一个结果,但是很多场景下,我们可能没办法微调,例如文本聚类,我们更需要的是文本的向量表示;又亦如文本匹配,特别是实时搜索场景,当候选集数量较多时,直接使用ptm做匹配速度较慢。那么如何优雅的使用预训练模型生成文本embedding呢?本文将会从不同的预训练模型与不同的优化方法去介绍文本embedding的生成方式,如有理解错误,欢迎
转载
2024-05-13 10:34:05
144阅读
2019年03月24日15:23:32更新: 由于图片经常显示不出来,本文最新链接请点击:://fuhailin.github.io/Embedding/ 博主所有博客写作平台已迁移至:://fuhailin.github.io/ ,欢迎收藏关注。这篇博客翻译自国外的深度学习系列文章的第四篇在深度学习实验中经常会遇Embedding层,然而网络上的介绍可谓是相当含糊。比
转载
2024-07-29 19:06:14
381阅读
TF2默认的即时执行模式(Eager Execution)带来了灵活及易调试的特性,但在特定的场合,例如追求高性能或部署模型时,我们依然希望使用 TensorFlow 1.X 中默认的图执行模式(Graph Execution),将模型转换为高效的 TensorFlow 图模型。此时,TensorFlow 2 为我们提供了 tf.function 模块,结合 AutoGraph
不知道大家有没有这种感受,在学习推荐系统算法模型时,少不了embedding的应用,有的推荐算法模型甚至可以说就是在做embedding的过程,可见embedding在推荐系统中的重要性。这篇文章就专门把embedding单独提出来,梳理一下embedding在推荐系统中的应用。以下内容主要从深度学习方法和传统的协同过滤方法两个方面加深和理解在推荐系统领域对embedding的认识,感受下“emb
1. 最大期望EM 最大期望(Expectation Maximum)算法是一种迭代优化算法,如果概率模型的变量都是观测变量,那么给定数据,可以直接用最大似然估计法或者贝叶斯估计法去估计模型的参数。但是,当模型含有隐变量时,就不能简单的使用这些估计方法。EM算法就是含有隐变量的概率模型参数估计的最大似然估计法。  
前言上篇讲了文件夹结构,这篇呢我们来聊一聊3D模型的相关内容。我们先来梳理下模型进入游戏的整个工作流程,然后再依次分析有哪些标准与规则。美术在DCC(Digital Content Creation,数字内容创作,游戏行业中是指美术制作数字内容所使用的软件工具)软件中进行模型创作。制作完成后,从DCC软件中导出FBX格式。导入Unity引擎并设置导入的相关选项。生成预设供程序使用。从以上流程我们可
文章目录前言导读摘要预备知识语言模型ChatGPT性能暴涨的原因(涌现)GPT-1Transformer背景介绍模型精讲数据集及处理Common CrawlC4GithubWikipediaGutenberg and Books3ArXivStack Exchange小结关键TrickPre-normalizationSwiGLURotary Embeddings实验分析和讨论训练Trick模型
转载
2024-09-06 12:01:10
236阅读
EM算法详解(一)单高斯模型1.1 一维高斯分布:1.2 多维高斯分布:(二)最大似然估计2.1 最大似然估计的数学概念:2.2 最大似然估计的基本步骤:2.2.1 构造似然函数:2.2.2 对数似然函数:2.2.3 计算参数估计值:(三)混合高斯模型3.1 单高斯模型的局限:3.2 全概率公式:3.3 混合高斯模型的概念:(四)最大似然估计的局限4.1 混合模型的似然函数:4.2 对数似然函数