最近在工作中进行了NLP的内容,使用的还是Keras中embedding的词嵌入来做的。Keras中embedding层做一下介绍。中文文档地址:https://keras.io/zh/layers/embeddings/参数如下:其中参数重点有input_dim,output_dim,非必选参数input_length.初始化方法参数设置后面会单独总结一下。 demo使用预训练(使用百度百科(w
转载 2024-04-19 15:27:29
155阅读
其实Embedding技术发展相对比较早,随着深度学习框架的发展,如tensorflow,pytorch,Embedding技术显得越来越重要,特别在NLP和推荐系统领域应用最为广泛。下面主要讲讲我认识的Embedding技术。本文目录:一、Embedding技术发展时间轴关键点二、word2vec补充:fastText算法三、Item2Vec四、Youtube基于Embedding的召回算法五、
1.Transformer为何使用多头注意力机制?(为什么不使用一个头)多头注意力直觉上的解释,其实类似cnn中的多核,关注到不同子空间的信息,捕捉到更加丰富的特征信息,当然从代码实现上不是类似于cnn的多核,因为keyi, queryi 并没有去关注其他子空间j!=i的值 但目前并没有一个好的解释,https://www.zhihu.com/question/341222779,但确
一、前言1、记忆性利用手工构造的交叉组合特征来使线性模型具有“记忆性”,使模型记住共现频率较高的特征组合,且可解释性强。这种方式有着较为明显的缺点:首先,特征工程需要耗费太多精力。其次,因为模型是强行记住这些组合特征的,所以对于未曾出现过的特征组合,权重系数为0,无法进行泛化。2、泛化性 为了加强模型的泛化能力,引入了DNN结构,将高维稀疏特征编码为低维稠密的Embedding vector,这种
从C端视角来看,58商业将Embedding作为广告的一种理解方式,使我们精确理解C端用户意图,同时理解B端推广提供的能力,使得目标推广以合适的形式触达C端用户。Embedding对文本语义、用户行为进行向量化,通过数学计算表达广告和用户关系,具备易表示、易运算和易推广的特点。今天将从以下几方面来介绍Embedding技术在58商业搜索和推荐场景的实践:58商业流量场景主流Embedding算法介
转载 2024-06-07 22:05:41
136阅读
Embedding技术概览:1. Graph Embedding简介Word2Vec和其衍生出的Item2Vec类模型Embedding技术的基础性方法,二者都是建立在“序列”样本(比如句子、用户行为序列)的基础上的。在互联网场景下,数据对象之间更多呈现的是图结构,所以Item2Vec在处理大量的网络化数据时往往显得捉襟见肘,在这样的背景下,Graph Embedding成了新的研究方向,并逐渐
转载 2024-04-22 13:14:42
640阅读
学习 Transformer 该从那里起步呢?首先,当然是膜拜CV大佬,向大佬学习,这位大佬分析细致入理,写文幽默风趣,本文也是从这位大佬这里搬过来的(侵删)。这是大佬的知乎号:目录1. One-Hot Encoding2. Word Embedding3. Position Embedding为何使用三角函数呢?为何使用这种方式编码能够代表不同位置信息呢?End去繁就简,咱们直接开始!1. On
最近做完UNIT一个小项目后,结合同时期看KBQA的文章,对NLP/NLU方向产生了比较大的兴趣,想深入学习一下,结合一篇综述Recent Trends in Deep Learning Based Natural Language Processing(参考文献[5]为其阅读笔记)的阐述顺序,把相关的知识补一补,本文即第一部分Word Embedding。主要参考文献:[1] word2vec
1.基本概念 Lora,英文全称“Low-Rank Adaptation of Large Langurage Models”,直译为大语言模型的低阶适应,这是微软的研究人员为了解决大语言模型微调而开发的一项技术2.作用只要是图片上的特征都可以提取并训练 (1)对人物/物品的脸部特征进行复刻 (2)生成某一特定风格的图像 (3)固定动作特征3.embedding和Lora的区别 embedding
1、先来看看平常使用的向量所占用空间的大小 pytorch官方发布的向量占用 举例32bit float tensor,占用4个字节,所以对于一张RGB三通道的图像来说,如果长宽分别为500 x 500,数据类型为单精度浮点型,那么这张图所占的显存的大小为:500 x 500 x 3 x 4B = 3M。一个(256,3,100,100)-(N,C,H,W)的FloatTensor
在现代科技发展中,Ollama 模型及其嵌入(Embedding模型成为自然语言处理领域的一个热点。最近许多工程师和研究者对如何优化这些嵌入模型进行了探讨,意图提升模型性能并解决潜在的问题。本文将详细记录如何解决“ullama 模型Embedding 模型”的过程,涵盖从背景描述到技术原理、架构解析、源码分析等多个维度的内容。 我们首先来看一下背景信息。Ollama 模型通常通过将复杂的文本映
原创 13天前
314阅读
  PowerDesigner的程序破解: 将破解文件pdflm15.dll复制到PowerDesigner的安装路径下。覆盖已有文件。PowerDesigner的类库的导入:将类库解压,然后打开文件夹将里面的所有类库复制到PowerDesigner的安装路径下。-----------------------------------介绍PowerDesigner的五种模型--------
2019年03月24日15:23:32更新: 由于图片经常显示不出来,本文最新链接请点击:://fuhailin.github.io/Embedding/ 博主所有博客写作平台已迁移至:://fuhailin.github.io/ ,欢迎收藏关注。这篇博客翻译自国外的深度学习系列文章的第四篇在深度学习实验中经常会遇Embedding层,然而网络上的介绍可谓是相当含糊。比
前言预训练语言模型在目前的大部分nlp任务中做个微调都能取得不错的一个结果,但是很多场景下,我们可能没办法微调,例如文本聚类,我们更需要的是文本的向量表示;又亦如文本匹配,特别是实时搜索场景,当候选集数量较多时,直接使用ptm做匹配速度较慢。那么如何优雅的使用预训练模型生成文本embedding呢?本文将会从不同的预训练模型与不同的优化方法去介绍文本embedding的生成方式,如有理解错误,欢迎
ollama Embedding 模型的不断发展,为自然语言处理和机器学习领域带来了新的可能性。然而,在使用这些模型时,用户往往会遇到一些挑战,特别是在模型的嵌入过程中。理解这些问题并掌握解决方案将对业务产生显著影响,这篇博文将为您详细解析如何应对“ollama Embedding 模型”的相关问题。 ### 背景定位 在现代的数据驱动业务中,文本数据的处理愈发重要。通过使用“ollama E
原创 1月前
251阅读
©作者 | 吴迪单位 | UCLA研究方向 | NLP排版 | PaperWeekly前言在现代自然语言处理(NLP)的应用中,使用预训练的表征进行迁移学习是很重要的一个方法。在深度学习开始被应用之后,迁移学习最早出现在使用预训练的特征向量,以及对预训练语言模型(pre-trained language model,PLM)进行微调(fine-tuning)[1]。基于预训练模型,ada
模型掀起的技术狂热,终究要落于理性繁荣。中国科技圈很久没有出现如此大规模的技术热潮了,这在4月11日的阿里云峰会体现得淋漓尽致,加之阿里巴巴CEO张勇的阿里云首秀,现场人头攒动,能容纳上千人的报告厅一度封闭,行业内外都想找到一些答案。阿里巴巴集团董事会主席兼CEO、阿里云智能集团CEO张勇在云峰会上表示,阿里巴巴所有产品未来将接入“通义千问”大模型,进行全面改造。他认为,面向AI时代,所有产品都
ollama embedding 模型是一种新兴的模型,主要用于生成高质量的文本嵌入,广泛应用于自然语言处理领域。在这篇博文中,我将分享我在配置、编译、调优、开发和测试 ollama embedding 模型中的一些经验。 ## 环境配置 为了顺利运行 ollama embedding 模型,首先我们需要配置合适的开发环境。以下是整个流程: ```mermaid flowchart TD
原创 29天前
241阅读
1.SVM和LR(逻辑回归)1.1 相同点都是线性分类器。本质上都是求一个最佳分类超平面。都是监督学习算法。都是判别模型。通过决策函数,判别输入特征之间的差别来进行分类。常见的判别模型有:KNN、SVM、LR。常见的生成模型有:朴素贝叶斯,隐马尔可夫模型。1.2 不同点损失函数不同,LR的损失函数为交叉熵;svm的损失函数自带正则化,而LR需要在损失函数的基础上加上正则化。两个模型对数据和参数的敏
ELMO原理介绍一、引言1.1 从Word Embedding到ELMO二、ELMO2.1 ELMO原理2.2 ELMO 训练2.2.1 第一阶段 语言模型进行预训练2.2.2 第二阶段 接入下游NLP任务2.3 ELMO效果 一、引言1.1 从Word Embedding到ELMOWord Embedding:词嵌入。最简单粗劣的理解就是:将词进行向量化表示,实体的抽象成了数学描述,就可以进行
  • 1
  • 2
  • 3
  • 4
  • 5