搭建集群的时候,hdfs的数据挂载点一定要指定到独立的目录,不要制定到/home之类的下面,因为在使用过程中很有可能导致某个挂载点满了,要是这样的话,/home可能就满了,影响linux系统的正常使用。如果多个挂载点存储空间大小相差较大,那么一般设置策略的时候最好设置按照空间,而不要用默认的轮训方式,要不容易空间小的磁盘先满。impala在使用过程中要注意建表的时候指定路径不要指定到根目录
原创
2018-06-22 13:43:45
684阅读
一、环境变量错误导致电脑无法进入图形化界面,只能使用命令行ctrl+alt+f6,并且几乎所有命令无法使用该中情况可以解决(ubuntu),因为少
原创
2023-05-31 00:02:25
66阅读
2018年的数博会,让更多的人看到了大数据的发展前景,当然,也看到了未来的发展趋势。大数据现处于高爆发的时期,人才需求紧张,专业大数据人才企业往往高薪难聘。所以大数据领域的求学者也颇为众多,那么对于0基础的小白而言,快速入门大数据究竟是先学python还是java呢?其实想要搞清楚先学python还是java,我们不妨先来了解二者的区别。首先:先来简单了解一下pythonPython语法简洁清晰,
转载
2022-03-15 14:03:59
1063阅读
一、背景mysql 表中已有 4 亿数据,为提高查询效率,需创建分区,一开始计划是创建 HASH 分区,结果报错:ERROR 1659 (HY000): Field 'partno' is of a not allowed type for this type of partitioning1 查询
转载
2019-11-21 08:52:00
258阅读
2评论
点击上方蓝色字体,选择“设为星标”回复”资源“获取更多资源一开始需要全量导入kudu,这时候我们先用sqoop把关系数据库数据导入临时表,再用impala从临时表导入kudu目标表由于sq...
转载
2021-06-10 21:53:19
383阅读
一开始需要全量导入kudu,这时候我们先用sqoop把关系数据库数据导入临时表,再用impala从临时表导入kudu目标表 由于sqoop从关系型数据直接以parquet格式导入hive会有问题,这里默认hive的表都是text格式;每次导完到临时表,需要做invalidate metadata 表 ...
转载
2021-08-06 11:54:00
270阅读
2评论
点击上方蓝色字体,选择“设为星标”回复”资源“获取更多资源一开始需要全量导入kudu,这时候我们先用sqoop把关系数据库数据导入临时表,再用impala从临时表导入kudu目标表由于sq...
转载
2021-06-10 21:53:18
448阅读
我上大学时那时候安卓的版本才到安卓4.4,在智能手机出来普及以前,各大网站的数据量并没有那么多,但是随着智能手机的普及,互联网巨头家里的数据呈现几何级增长,像什么微博,微信,视频网站的数据;需要找到合适的存储方式—>>分布式存储架构,可以水平扩展,实现存储数据类型多样化,二维可以实现高容错高吞吐量,轻松实现大文件存储(支持P级别的
原创
2023-03-15 11:01:42
385阅读
大数据啊大数据!浪尖浪尖聊大数据开始本文之前,希望大家参与一下下面的投票。做这个投票的主要原因是最近经常有找浪尖咨询大数据,自学,培训及找工作的事情,问题归类如下:大数据要不要培训自学一段时间,发现很痛苦,没人指导想放弃,培训费用太高了培训发现跟不上,举步维艰培训结束了,为啥面试机会甚少下面分类回答一下。1.大数据需要培训吗?对于java老鸟,因为有比较强的编程经验,可以买点视频或者找大牛付费专栏
原创
2021-03-19 13:47:02
10000+阅读
1.大数据对思维方式的影响是使得分析全样而非抽样、效率而非精准、相关而非因果。 2.区别:大数据侧重于对海量数据的存储、处理与分析,从海量数据中发现价值,服务于生产和生活;云计算本质上旨在整合和优化各种IT资源,并通过网络以服务的方式廉价地提供给用户;物联网的发展目标是 实现物物相连,应用创新是物联网发展的核心。 联系:从整体上看
今天听了一场报告会,是清华计算机系60周年系列讲座之一,主讲人是哈工大软院院长李建中教授,主题《计算和数据资源受限的大数据计算的复杂性理论与高效算法研究》,李老师介绍的大数据计算理论体系很...
原创
2022-04-29 22:22:20
1990阅读
大数据框架 系统平台 Hadoop、CDH、HDP 监控管理 CM、Hue、Ambari、Dr.Elephant、Ganglia、Zabbix、Eagle 文件系统 HDFS、GPFS、Ceph、GlusterFS、Swift 、BeeGFS、Alluxio 资源调度 YARN、Mesos 协调框架
原创
2022-07-30 00:54:47
877阅读
大数据概述: 大数据的发展历程:第一阶段:萌芽期(20世纪90年代至21世纪初) 第二阶段:成熟期(21世纪前十年) 第三阶段:大规模应用期(2010年以后) 大数据的特点(简称4V):数据量大 数据类型多 处理速度快 价值密度低 大数据的特征:全面而非抽样 效率而非精确 相关而非因果 在科学研究上的四种范式: 实验科学、理论科学、计算科学、数据密集型科学大数据技术 主要包括数据采集与预处理、数据
近年来,伴随手机的普及以及移动互联网技术的迅猛发展,手机使用中产生的大数据资源的研究与应用价值受到学者们的重视。然而,合理开发、利用手机大数据的边界尚未确定,海量数据仍处于“沉睡”之中。忠实记录用户行为据2016年1月工信部发布的2015通信运营业统计公报,中国移动电话用户总数达13.06亿户。如此规模的移动电话用户群体将产生海量数据。同济大学建筑与城市规划学院副教授钮心毅介绍,手机数据包括通话详
看过来!!!2017年,大数据已经从概念走向落地;2019年,中低端IT工程师紧随浪潮加速向大数据转型,企业对大数据人才争夺直接进入白热化阶段。因此,对于想学IT技术的、想月入过万不是梦的人而言,我建议,直接选择学习大数据技术是符合潮流和就业需求的选择。一、大数据是什么?1、大数据简介一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的
Spark-Core介绍计算引擎,类似MapReduce,将数据存放在内存中,减少磁盘IO,他是有scala编写的总体技术栈讲解Spark Streaming流式计算框架Spark GraphX图形计算引擎ML Base机器学习Spark SQL使用SQL处理业务优点更快易于使用Spark Sql支持多种环境运行模式Local多用于本地测试,如在 eclipse , idea 中写程序测试等。St
各个行业的业务数据都运行在关系数据库中,但是历史数据的保存,数据分析和数据挖掘,需要准实时的从关系数据库导入到分布式数据库系统中。本文介绍了利用ISFRAME实现数据收集和备份的方法。
原创
2013-06-01 18:44:35
10000+阅读