计算机中的边缘算法主要是依靠梯度差来计算,常见的有sobel算子,lapacian算子等,在实现方法上都大同小异,OpenCV中对这类函数都有封装,使用起来很方便:1.Sobel算子的边缘检测我们先找一张灰度图像,这里用一张照片,取在HSV色域的V通道:sobel算子有两个方向:-1-2-1000121  -101-202-101  分别用来检测水平方向与竖
转载 2024-03-18 09:48:37
168阅读
计算机中的边缘算法主要是依靠梯度差来计算,常见的有sobel算子,lapacian算子等,在实现方法上都大同小异,OpenCV中对这类函数都有封装,使用起来很方便:1.Sobel算子的边缘检测我们先找一张灰度图像,这里用一张照片,取在HSV色域的V通道:sobel算子有两个方向:-1-2-1000121  -101-202-101  分别用来检测水平方向与竖
一、算子简介   在一维连续数集上有函数f(x),我们可以通过求导获得该函数在任一点的斜率,根据导数的定义有:   在二维连续数集上有函数f(x,y),我们也可以通过求导获得该函数在x和y分量的偏导数,根据定义有: 二、Prewitt算子和Sobel算子   Prewitt算子是一种一阶微分算子的边缘检测,利用像素点上下、左右邻点的灰度差,在边缘处达到极值检测边缘,去掉部分伪边缘
Canny算子原理:Canny算子首先在x和y方向求一阶导数,然后组合为4个方向的导数。这些方向导数达到局部最大值(又叫非极大值抑制)的点就是组成边缘的候选点。然而,Canny算法最重要的一个新特点是其试图将独立的候选像素拼装成轮廓。轮廓的形成是对这些像素运用滞后性阈值。这意味着有两个阈值,上限和下限。如果一个像素的梯度大于上限阈值,则被认为是边缘像素,如果低于下限阈值,则被抛弃(灰度值被置为0)
图像底层特征提取是计算机视觉的基本步骤 1:边缘和轮廓能反映图像内容; 2:如果能对边缘和关键点可靠提取的话,很多视觉问题就基本上得到了解决边缘的定义“边缘是图像中亮度突然变化的区域。”“图像灰度构成的曲面上的陡峭区域。”“像素灰度存在阶跃变化或屋脊状变化的像素的集合。”灰度图像中的边缘类型 边缘提取灰度图象边缘提取,主要的思想: - 抑制噪声
转载 2024-03-14 08:58:02
125阅读
4f系统实现边缘提取基于傅里叶光学中的4f系统(所有系统参数自定),实现光学图像的边缘提取。研究:1)理论推导出边缘提取算子尺寸与空间复滤波器间空间分布的关系,可利用严格的公式进行推导;2)给出空间复滤波器的振幅和位相分布;3)找一些图片,验证滤波器在边缘提取的效果。第一部分 边缘提取算子对应空间复滤波器的理论推导假设算子对应的矩阵为,要变换到N×N的屏幕上,则算子的(1,1)点处在屏幕的位置,则
什么是边缘?图像的边缘时指图像局部区域亮度变化显著的部分,该区域的灰度剖面一般可以看做是一个阶跃,既从一个灰度值很小的缓冲区域内急剧变化到另一个灰度相差较大的灰度值边缘有正负之分,就像导数有正值也有负值一样边缘检测步骤:滤波:边缘检测的算法主要是基于图像强度的一阶和二阶导数,但导数常对噪声很敏感,因此必须采用滤波器来改善与噪声有关的边缘检测器的性能。增强:增强边缘的基础就是确定图像各点领域强度发变
边缘分类1.面上不连续        2.深度不连续        3.图像         4.阴影边提取边边就是信号突变的地方,求导即可。对x求导=右边的数-自身的数求导通过卷积来计算,用【-1,1】的卷积核对原图操作。其他卷积核1.如对x方向导,通常用【-1,0,
一、简介关于什么是卷积神经网络(CNN),请自行查阅资料进行学习。如果是初学者,这里推荐一下台湾的李宏毅的深度学习课程。链接就不给了,这些资料网站上随处可见。值得一提
原创 2021-07-05 15:18:10
869阅读
边缘检测1D、2D非最大抑制在二维的情况下,这可以通过检查最接近梯度方向的两个相邻像素来实现。滞后阈值法(两个阈值)边缘振幅大于较高阈值的点立即被接受为安全的边缘点。边缘振幅小于下阈值的点会立即被拒绝。在两个阈值之间具有边缘振幅的点通过一条路径连接到安全的边缘点,其中所有点的边缘振幅都高于较低阈值的边缘振幅才被接受。亚像素精度边缘检测 在得到像素级边后,提取具有亚像素精度的边:我们可以将一个二次曲
前言耐心看完一定会有收获的,大部分内容也会在代码中体现,结合理论知识和代码进行理解会更有效。代码用opencv4.5.1(c++)版实现一、边缘检测算法边缘检测算法是指利用灰度值的不连续性质,以灰度突变为基础分割出目标区域。对铝铸件表面进行成像后会产生一些带缺陷的区域,这些区域的灰度值比较低,与背景图像相比在灰度上会有突变,这是由于这些区域对光线产生散射所引起的。因此边缘检测算子可以用来对特征的提
        经典的边缘提取算法中有一类算法是基于设计边缘提取算子(或者也可以叫卷积模板),然后经过阈值处理得到二值化的边缘图,下面就具体介绍这种思路相关的内容。边缘提取(一):传统的边缘提取算子(1)传统的边缘提取算子包括sobel、prewit、robert、LoG等,下面一一介绍:1.    &nbs
在传统的计算机视觉领域,经常需要使用一些传统的图像处理算法完成对图像的边缘提取功能,通过对图像的边缘进行提取完成对目标对象的分割,目标分割技术又包括语义分割与实例分割,比较高端的鲁棒性较强的还是需要卷积神经网络算法进行相关的训练,如fcn全连接网络,mask-rcnn实例分割网络。本案例旨在采用传统的图像处理技术完成对图像的边缘检测任务,并通过膨胀腐蚀操作进行连通域的提取,之后通过连通域的填充以及
文章目录1.边缘提取前置知识定义了解2.原理具体原理步骤3.Prewitt、Sobel算子4.Canny算法介绍算法灰度化高斯滤波检测图像的边缘*非极大值抑制(NMS)双阈值检测代码实现 1.边缘提取前置知识图像中的低频信号和高频信号也叫做低频分量和高频分量。简单一点说,图像中的高频分量,指的是图像强度(亮度/灰度)变化剧烈的地方,也就是边缘(轮廓); 图像中的低频分量,指的是图像强度(亮度/灰
Open CV系列学习笔记(十六)Canny边缘提取Canny算法Canny边缘检测算子是John F. Canny于 1986 年开发出来的一个多级边缘检测算法。更为重要的是 Canny 创立了边缘检测计算理论(Computational theory of edge detection)解释这项技术如何工作。 通常情况下边缘检测的目的是在保留原有图像属性的情况下,显著减少图像的数据规模。有多种
边缘提取基本原理 图像边缘是图像最基本的特征,所谓边缘(Edge) 是指图像局部特性的不连续性。灰度或结构等信息的突变处称之为边缘。例如,灰度级的突变、颜色的突变,、纹理结构的突变等。边缘是一个区域的结束,也是另一个区域的开始,利用该特征可以分割图像。 图像的边缘有方向和幅度两种属性。边缘通常可以通过一阶导数或二阶导数检测得到。一阶导数是以最大值作为对应的边缘的位置,而二阶导数则以过零点作为对应边
Canny算子是John.F.Canny于20世纪80年代提出的一种多级边缘检测算法。该算子最初的提出是为了能够得到一个最优的边缘检测,即:检测到的边缘要尽可能跟实际的边缘接近,并尽可能的多,同时,要尽量降低噪声对边缘检测的干扰。是一个很好的边缘检测器,很常用也很实用的图像处理方法。总共可以分为五步:高斯模糊GaussianBlur。将输入的彩色图像进行高斯模糊来去掉噪声灰度转换cvtColor。
一、边缘提取常用算子1、sobel算子边缘检测//Sobel梯度算子 void imageSobel(){ const char* name = "lena.tif"; IplImage* image = cvLoadImage(name, CV_LOAD_IMAGE_GRAYSCALE); if (image == NULL){ printf("image load failed.\n
1.  题目描述安装opencv环境,实现边缘提取2.  实现过程1、 安装opencv+python环境2、 打开图片3、 将图片二值化4、 提取边缘5、 显示图片3.  运行结果代码:运行结果:   4.  问题及解决方法问题:提取边缘时,背景为黑色,边缘为白色,与要求不符解决方法:用255减去原图灰度矩阵,就能得到颜色转置
1、Roberts算子2、Prewitt算子3、Sobel算子4、Laplacian算子5、Scharr算子6、Canny算子步骤1.步骤2.步骤3.1)2)步骤4.步骤5.7、LOG算子 1、Roberts算子在Python中,Roberts算子主要通过Numpy定义模板,再调用OpenCV的filter2D()函数实现边缘提取。该函数主要是利用内核实现对图像的卷积运算。dst = filte
转载 2023-08-20 13:32:37
813阅读
  • 1
  • 2
  • 3
  • 4
  • 5