简介 本文介绍大数据的一些处理方案。 本内容来源于一次面试:如何统计大数据量重复出现的次数?比如,数据量超过了4G,但内存只有4G,该如何处理?概述处理海量数据问题,无非就是:分而治之(hash映射) + hash统计 + 排序; Bloom filter/Bitmap;
原创
2022-02-15 16:06:22
586阅读
# Java大数据处理方案
## 引言
随着互联网的普及和数据的快速增长,大数据处理成为了一个热门的话题。而Java作为一门面向对象的编程语言,具有强大的性能和丰富的库和框架,成为了大数据处理的首选语言之一。本文将介绍Java大数据处理方案,包括常用的库和框架,以及示例代码。
## Java大数据处理方案概述
Java大数据处理方案主要包括以下几个方面的内容:
1. 数据获取:从各种数据
原创
2023-09-26 19:33:19
71阅读
随着互联网的快速发展和数据的爆炸增长,大数据处理成为了当今时代的一个重要课题。对于企业来说,如何高效地处理和分析海量数据,成为了提升竞争力和业务发展的关键。而在处理大数据的过程中,选择合适的工具和框架显得尤为重要。 &nb
转载
2024-06-23 04:13:47
37阅读
现代Java应用架构越来越强调数据存储和处理分离,以获得更好的可维护性、可扩展性以及可移植性,比如火热的微服务就是一种典型。这种架构通常要求业务逻辑要在Java程序中实现,而不是像传统应用架构中放在数据库中。应用中的业务逻辑大都会涉及结构化数据处理。数据库(SQL)中对这类任务有较丰富的支持,可以相对简易地实现业务逻辑。但Java却一直缺乏这类基础支持,导致用Java实现业务逻辑非常繁琐低效。结果
转载
2024-07-20 13:16:11
45阅读
写程序软件处理用户量和数据量。用户量一大,并发量线程安问题就会出现。软件一开始是使用C/S的应用架构模式。客户端和服务器端通过互联网相互访问。Windows的客户端软件通过C++编写出来,不同的操作系统支持的客户端软件编写语言不一样。B/S架构模式现在很受到大众的欢迎,一台计算机的应用可携带内存空间有限,安装操作系统之后,推荐安装适用的工具软件。数据量多,处理起来的方案也很多。分布式的编程思想在编
转载
2023-09-18 23:26:01
53阅读
一、大数据概念海量的数据:TB PB ZB。高增长率:数据的形成速度(使用爬虫)。多样化:数据是结构化、非结构化、半结构化。二、大数据的应用 电商行业:电商行业是最早利用大数据进行精准营销,它根据客户的消费习惯提前生产资料、物流管理等,有利于精细社会大生产。由于电商的数据较为集中,数据量足够大,数据种类较多,因此未来电商数据应用将会有更多的想象空间,包括预测流行趋势,消费趋势、地域消费特点、客户
前言这是一个基本问题,这篇文章是我很早之前遇到的一种情况,后来在学习视频的时候又遇到了一次,因此给出一个总结。其实解决能否插入重复数据的问题,一般情况下是有两个思路,就像治水一样,第一个就是从源头,第二个就是在水流经的路上。我们带着这两种思路继续往下看:问题在我们的mysql数据库中,经常会出现一些重复的数据,有些情况我们允许重复数据的存在,但有时候我们也需要删除这些重复的数据。我们如何去处理呢?
转载
2024-10-31 14:43:31
26阅读
我们已经进入了大数据处理时代,需要快速、简单的处理海量数据,海量数据处理的三个主要因素:大容量数据、多格式数据和速度, DMCTextFilter和HTMLFilter是由北京红樱枫软件有限公司研制和开发的纯文本抽出和HTML转换通用程序库产品。本产品可以从各种各样的文档格式的数据中或从插入的OLE对象中,快速抽出纯文本数据信息和转换成HTML文件。便于用户实现对多种文档数据资源信息进行统一管理,编辑,检索和浏览。
原创
2014-06-10 10:39:06
937阅读
我们已经进入了大数据处理时代,需要快速、简单的处理海量数据,海量数据处理的三个主要因素:大容量数据、多格式数据和速度, DMCTextFilter和HTMLFilter是由北京红樱枫软件有限公司​研制和开发的纯文本抽出和HTML转换通用程序库产品。本产品可以从各种各样的文档格式的数据中或从插入的OLE对象中,快速抽出纯文本数据信息和转换成HTML文件。便于用户实现对多种文档数据资源信息进行统一管理,编辑,检索和浏览。
原创
2014-06-13 18:30:03
863阅读
我们已经进入了大数据处理时代,需要快速、简单的处理海量数据,海量数据处理的三个主要因素:大容量数据、多格式数据和速度, DMCTextFilter和HTMLFilter是由北京红樱枫软件有限公司研制和开发的纯文本抽出和HTML转换通用程序库产品。本产品可以从各种各样的文档格式的数据中或从插入的OLE对象中,快速抽出纯文本数据信息和转换成HTML文件。便于用户实现对多种文档数据资源信息进行统一管理,编辑,检索和浏览。
原创
2014-06-25 17:17:56
915阅读
作者: Divakar等摘要:大数据解决方案的逻辑层可以帮助定义和分类各个必要的组件,大数据解决方案需要使用这些组件来满足给定业务案例的功能性和非功能性需求。这些逻辑层列出了大数据解决方案的关键组件,包括从各种数据源获取数据的位置,以及向需要洞察的流程、设备和人员提供业务洞察所需的分析。 概述 这个 “大数据架构和模式” 系列的 第 2 部分 介绍了一种评估大数据解决方案可行性的基于维度的方
转载
2023-07-08 15:59:04
171阅读
目录零、本节学习目标一、Spark的概述(一)Spark的组件1、Spark Core2、Spark SQL3、Spark Streaming4、MLlib5、Graph X6、独立调度器、Yarn、Mesos(二)Spark的发展史1、发展简史2、目前最新版本二、Spark的特点(一)速度快(二)易用性(三)通用性(四)兼容性(五)代码简洁1、采用MR实现词频统计2、采用Spark实
转载
2023-08-08 10:02:29
233阅读
最近在整理整理java大数据处理这一系列的文章,在网上发现一个java写excel文件的方式,非常的有技巧,并且性能非常高,我在自己机器上简单的操作了一下,感觉非常的棒
这里就把这个方法和大家分享一下,一起讨论一下这种方式的成熟度.
简单说明
转载
2023-07-10 21:16:02
198阅读
文章目录2.1 概述2.2 Hadoop项目结构2.3 Hadoop的安装与使用2.4 Hadoop集群 2.1 概述• Hadoop是Apache软件基金会旗下的一个开源分布式计算平台,为用户提供了系统底层细节透明的分布式基础架构 • Hadoop是基于Java语言开发的,具有很好的跨平台特性,并且可以部署在廉价的计算机集群中 • Hadoop的核心是分布式文件系统HDFS(Hadoop Di
转载
2023-08-13 17:57:47
203阅读
第一章 Spark 性能调优1.1 常规性能调优1.1.1 常规性能调优一:最优资源配置Spark性能调优的第一步,就是为任务分配更多的资源,在一定范围内,增加资源的分配与性能的提升是成正比的,实现了最优的资源配置后,在此基础上再考虑进行后面论述的性能调优策略。资源的分配在使用脚本提交Spark任务时进行指定,标准的Spark任务提交脚本如代码清单2-1所示
转载
2023-11-17 11:46:37
141阅读
终极Hadoop大数据教程包含 MapReduce、HDFS、Spark、Flink、Hive、HBase、MongoDB、Cassandra、Kafka 等的数据工程和 Hadoop 教程!课程英文名:The Ultimate Hands-On Hadoop - Tame your Big Data!此视频教程共17.0小时,中英双语字幕,画质清晰无水印,源码附件全下载地址课程编号:307 百度
转载
2023-11-17 20:37:23
232阅读
大数据时代:大数据无处不在! 大数据的主要分析逻辑: 1.做全样而非抽样的分析 2.追求效率 3.追求事件的相关性并非因果 大数据的关键技术 大数据基本处理流程:数据采集、存储管理、处理分析、结果呈现等环节。主要:数据存储与管理(分布式存储)集群 数据处理与分析(分布式处理)集群技术层面: 数据采集与预处理 数据存储和管理 数据处理与分析
转载
2023-07-29 18:56:51
170阅读
目录一、概述1)Spark特点2)Spark适用场景二、Spark核心组件三、Spark专业术语详解1)Application:Spark应用程序2)Driver:驱动程序3)Cluster Manager:资源管理器4)Executor:执行器5)Worker:计算节点6)RDD:弹性分布式数据集7)窄依赖8)宽依赖9)DAG:有向无环图10)DAGScheduler:有向无环图调度器11)Ta
转载
2023-07-18 22:26:12
116阅读
很多事情在执行的时候都是有一定的流程的,那么大数据的处理也不例外,这是因为有关程序都是需要逻辑的,而大数据处理也需要逻辑,这也就需要流程了。那么大数据处理的基本流程是什么呢?下面就由小编为大家解答一下这个问题。大数据处理的第一个步骤就是数据抽取与集成。这是因为大数据处理的数据来源类型丰富,大数据处理的第一步是对数据进行抽取和集成,从中提取出关系和实体,经过关联和聚合等操作,按照
转载
2023-11-02 09:23:12
124阅读
Apache Hadoop项目包括以下四个主要模块(1)Hadoop Common:Hadoop的通用工具集(2)Hadoop Distributed File System (HDFS):分布式文件系统(3)Hadoop YARN:任务调度、集群资源管理框架(4)Hadoop MapReduce:基于YARN的并行处理编程模型 大数据处理流程(1)采集利用多个数据库接受客户
转载
2023-11-10 09:21:48
41阅读