简介 本文介绍大数据的一些处理方案。 本内容来源于一次面试:如何统计大数据量重复出现的次数?比如,数据量超过了4G,但内存只有4G,该如何处理?概述处理海量数据问题,无非就是:分而治之(hash映射) + hash统计 + 排序; Bloom filter/Bitmap;
原创 2022-02-15 16:06:22
586阅读
前言这是一个基本问题,这篇文章是我很早之前遇到的一种情况,后来在学习视频的时候又遇到了一次,因此给出一个总结。其实解决能否插入重复数据的问题,一般情况下是有两个思路,就像治水一样,第一个就是从源头,第二个就是在水流经的路上。我们带着这两种思路继续往下看:问题在我们的mysql数据库中,经常会出现一些重复的数据,有些情况我们允许重复数据的存在,但有时候我们也需要删除这些重复的数据。我们如何去处理呢?
# Java大数据处理方案 ## 引言 随着互联网的普及和数据的快速增长,大数据处理成为了一个热门的话题。而Java作为一门面向对象的编程语言,具有强大的性能和丰富的库和框架,成为了大数据处理的首选语言之一。本文将介绍Java大数据处理方案,包括常用的库和框架,以及示例代码。 ## Java大数据处理方案概述 Java大数据处理方案主要包括以下几个方面的内容: 1. 数据获取:从各种数据
原创 2023-09-26 19:33:19
71阅读
        随着互联网的快速发展和数据的爆炸增长,大数据处理成为了当今时代的一个重要课题。对于企业来说,如何高效地处理和分析海量数据,成为了提升竞争力和业务发展的关键。而在处理大数据的过程中,选择合适的工具和框架显得尤为重要。       &nb
1、读写分离 读写分离,将数据库的读写操作分开,比如让性能比较好的服务器去做写操作,性能一般的服务器做读操作。写入或更新操作频繁可以借助MQ,进行顺序写入或更新。 2、分库分表 分库分表是最常规有效的一种大数据解决方案。垂直拆分表,例如将表的大文本字段分离出来,成为独立的新表。水平拆分表,可以按时间,根据实际情况一个月或季度创建一个表,另外还可以按类型拆分。单表拆分数据应控制在1000万以内。分库
转载 2023-05-31 15:39:26
138阅读
我们的数据来自各个方面,在面对庞大而复杂的大数据,选择一个合适的处理工具显得很有必要,工欲善其事,必须利其器,一个好的工具不仅可以使我们的工作事半功倍,也可以让我们在竞争日益激烈的云计算时代,挖掘大数据价值,及时调整战略方向。本文转载自中国大数据网。 大数据是一个含义广泛的术语,是指数据集,如此庞大而复杂的,他们需要专门设计的硬件和软件工具进行处理。该数据集通常是万亿或EB的大小。这些数据集收集自
转载 2023-11-29 10:03:00
72阅读
场景描述:停车记录表过大,需要归档处理(不是备份),偶有少量应用查询。 针对insert、update热表+数据量大的问题,果断分库分表。以下讨论针对仅是数据量大,不易维护,没有热表问题。 综合评估, 1、研发工作量最小,推荐3,支持本地join操作。不支持海量数据,使用前需计算。2、研发工作量第二小,推荐4.1。drds支持夸实例查询。不支持海量数据,使用前需计算。 3、单表海量数据:推荐6,不
转载 2023-10-07 22:32:35
90阅读
现代Java应用架构越来越强调数据存储和处理分离,以获得更好的可维护性、可扩展性以及可移植性,比如火热的微服务就是一种典型。这种架构通常要求业务逻辑要在Java程序中实现,而不是像传统应用架构中放在数据库中。应用中的业务逻辑大都会涉及结构化数据处理数据库(SQL)中对这类任务有较丰富的支持,可以相对简易地实现业务逻辑。但Java却一直缺乏这类基础支持,导致用Java实现业务逻辑非常繁琐低效。结果
写程序软件处理用户量和数据量。用户量一大,并发量线程安问题就会出现。软件一开始是使用C/S的应用架构模式。客户端和服务器端通过互联网相互访问。Windows的客户端软件通过C++编写出来,不同的操作系统支持的客户端软件编写语言不一样。B/S架构模式现在很受到大众的欢迎,一台计算机的应用可携带内存空间有限,安装操作系统之后,推荐安装适用的工具软件。数据量多,处理起来的方案也很多。分布式的编程思想在编
一、大数据概念海量的数据:TB PB ZB。高增长率:数据的形成速度(使用爬虫)。多样化:数据是结构化、非结构化、半结构化。二、大数据的应用  电商行业:电商行业是最早利用大数据进行精准营销,它根据客户的消费习惯提前生产资料、物流管理等,有利于精细社会大生产。由于电商的数据较为集中,数据量足够大,数据种类较多,因此未来电商数据应用将会有更多的想象空间,包括预测流行趋势,消费趋势、地域消费特点、客户
我们已经进入了大数据处理时代,需要快速、简单的处理海量数据,海量数据处理的三个主要因素:大容量数据、多格式数据和速度, DMCTextFilter和HTMLFilter是由北京红樱枫软件有限公司研制和开发的纯文本抽出和HTML转换通用程序库产品。本产品可以从各种各样的文档格式的数据中或从插入的OLE对象中,快速抽出纯文本数据信息和转换成HTML文件。便于用户实现对多种文档数据资源信息进行统一管理,编辑,检索和浏览。
原创 2014-06-10 10:39:06
937阅读
我们已经进入了大数据处理时代,需要快速、简单的处理海量数据,海量数据处理的三个主要因素:大容量数据、多格式数据和速度, DMCTextFilter和HTMLFilter是由北京红樱枫软件有限公司​研制和开发的纯文本抽出和HTML转换通用程序库产品。本产品可以从各种各样的文档格式的数据中或从插入的OLE对象中,快速抽出纯文本数据信息和转换成HTML文件。便于用户实现对多种文档数据资源信息进行统一管理,编辑,检索和浏览。
原创 2014-06-13 18:30:03
863阅读
我们已经进入了大数据处理时代,需要快速、简单的处理海量数据,海量数据处理的三个主要因素:大容量数据、多格式数据和速度, DMCTextFilter和HTMLFilter是由北京红樱枫软件有限公司研制和开发的纯文本抽出和HTML转换通用程序库产品。本产品可以从各种各样的文档格式的数据中或从插入的OLE对象中,快速抽出纯文本数据信息和转换成HTML文件。便于用户实现对多种文档数据资源信息进行统一管理,编辑,检索和浏览。
原创 2014-06-25 17:17:56
915阅读
文章目录2.1 概述2.2 Hadoop项目结构2.3 Hadoop的安装与使用2.4 Hadoop集群 2.1 概述• Hadoop是Apache软件基金会旗下的一个开源分布式计算平台,为用户提供了系统底层细节透明的分布式基础架构 • Hadoop是基于Java语言开发的,具有很好的跨平台特性,并且可以部署在廉价的计算机集群中 • Hadoop的核心是分布式文件系统HDFS(Hadoop Di
第一章 Spark 性能调优1.1 常规性能调优1.1.1 常规性能调优一:最优资源配置Spark性能调优的第一步,就是为任务分配更多的资源,在一定范围内,增加资源的分配与性能的提升是成正比的,实现了最优的资源配置后,在此基础上再考虑进行后面论述的性能调优策略。资源的分配在使用脚本提交Spark任务时进行指定,标准的Spark任务提交脚本如代码清单2-1所示
终极Hadoop大数据教程包含 MapReduce、HDFS、Spark、Flink、Hive、HBase、MongoDB、Cassandra、Kafka 等的数据工程和 Hadoop 教程!课程英文名:The Ultimate Hands-On Hadoop - Tame your Big Data!此视频教程共17.0小时,中英双语字幕,画质清晰无水印,源码附件全下载地址课程编号:307 百度
转载 2023-11-17 20:37:23
232阅读
     最近在整理整理java大数据处理这一系列的文章,在网上发现一个java写excel文件的方式,非常的有技巧,并且性能非常高,我在自己机器上简单的操作了一下,感觉非常的棒  这里就把这个方法和大家分享一下,一起讨论一下这种方式的成熟度.   简单说明  
作者: Divakar等摘要:大数据解决方案的逻辑层可以帮助定义和分类各个必要的组件,大数据解决方案需要使用这些组件来满足给定业务案例的功能性和非功能性需求。这些逻辑层列出了大数据解决方案的关键组件,包括从各种数据源获取数据的位置,以及向需要洞察的流程、设备和人员提供业务洞察所需的分析。  概述  这个 “大数据架构和模式” 系列的 第 2 部分 介绍了一种评估大数据解决方案可行性的基于维度的方
转载 2023-07-08 15:59:04
171阅读
 目录零、本节学习目标一、Spark的概述(一)Spark的组件1、Spark Core2、Spark SQL3、Spark Streaming4、MLlib5、Graph X6、独立调度器、Yarn、Mesos(二)Spark的发展史1、发展简史2、目前最新版本二、Spark的特点(一)速度快(二)易用性(三)通用性(四)兼容性(五)代码简洁1、采用MR实现词频统计2、采用Spark实
转载 2023-08-08 10:02:29
233阅读
MySQL单表记录数过大时,增删改查性能都会急剧下降,可以参考以下步骤来优化:单表优化除非单表数据未来会一直不断上涨,否则不要一开始就考虑拆分,拆分会带来逻辑、部署、运维的各种复杂度,一般以整型值为主的表在千万级以下,字符串为主的表在五百万以下是没有太大问题的。而事实上很多时候MySQL单表的性能依然有不少优化空间,甚至能正常支撑千万级以上的数据量:字段尽量使用TINYINT、SMALLINT、
转载 2023-08-22 13:24:51
85阅读
  • 1
  • 2
  • 3
  • 4
  • 5