线性- LDA(Linear Discriminant Analysis)降维算法LDA 是一种可作为特征抽取的技术,其目标是向最大化类间差异,最小化类内差异的方向投影,以利于分类等任务即将不同类的样本有效的分开。LDA 可以提高数据分析过程中的计算效率,对于未能正则化的模型,可以降低维度灾难带来的过拟合。
LDA 降维算法展示
详细内容可参见《数据降维—线性判别分析(LDA)》:代码参
转载
2023-07-07 22:29:52
132阅读
详解 LDA 详解 LDA基本概念什么是LDALDA 核心思想LDA 简单二分类实例实现步骤(python)第一步 标准化处理第二步 计算每一类别特征的均值向量第三步 计算类间散布矩阵S(B)和类内散布矩阵S(W)第四步 计算矩阵S(W)^(-1)S(B)的特征值和对应的特征向量第五步 选取前k个特征和对应的特征向量,构造一个d×k维的转换矩阵W,其中特征向量以列的形式排列第六步 将训练样本通过
转载
2023-10-27 04:34:29
92阅读
# LDA的变分EM算法与Python实现
## 引言
潜在狄利克雷分配(LDA, Latent Dirichlet Allocation)是一种流行的主题模型,用于从大型文档集中检测潜在主题。LDA的一个关键挑战是计算后验分布,这通常是不可行的,因此我们需要使用变分推断方法。变分期望最大化(Variational EM)算法为我们提供了一种有效的近似方法以推断主题分布。
本文将介绍LDA的
前置知识线性分类指存在一个线性方程可以把待分类数据分开,或者说用一个超平面能将正负样本区分开,表达式为 。线性分类器线性分类器就是用一个“超平面”将两个样本隔离开,如:二维平面上的两个样本用一条直线来进行分类;三维立体空间内的两个样本用一个平面来进行分类;N维空间内的两个样本用一个超平面来进行分类。常见的线性分类器有:LR,贝叶斯分类,单层感知机、线性回归,SVM(线性核)等。线性分类器速度快、编
转载
2024-04-03 20:19:46
87阅读
LDA是一种监督学习的降维技术,也就是说它的数据集的每个样本是有类别输出的。这点和PCA不同。PCA是不考虑样本类别输出的无监督降维技术。LDA的思想可以用一句话概括,就是“投影后类内方差最小,类间方差最大”。什么意思呢? 我们要将数据在低维度上进行投影,投影后希望每一种类别数据的投影点尽可能的接近,而不同类别的数据的类别中心之间的距离尽可能的大。下面,我们给出了 LDA 的一个简单的实现版本,模
转载
2024-06-06 11:57:46
54阅读
说说 sigmoid 函数为什么用于二分类问题?之前在学习 《Pattern Recognition and Machine Learning》这本书的时候,写笔记的时候,记录了 sigmoid 函数的推导,今天专门单拎出来从下面几个方面再总结一遍,再讲的细致一点。伯努利实验伯努利分布二元分类指数族函数sigmoid 函数的推导伯努利实验在介绍伯努利分布之前,先介绍一个有名的实验 – 伯努利实验。
LDA(Latent Dirichlet Allocation):潜在狄利克雷分布,是一种非监督机器学习技术。它认为一篇文档是有多个主题的,而每个主题又对应着不同的词。一篇文档的构造过程,首先是以一定的概率选择某个主题,然后再在这个主题下以一定的概率选出某一个词,这样就生成了这篇文档的第一个词。不断重复这个过程,就生成了整篇文章(当然这里假定词与词之间是没有顺序的,即所有词无序的堆放在一个大袋子中
转载
2023-11-01 14:49:51
104阅读
# 使用Python实现变分自编码器分类器
变分自编码器(VAE,Variational Autoencoder)是一种生成模型,广泛应用于生成任务及表征学习。本文将指导刚入行的小白如何实现一个变分自编码器分类器。以下是整个过程的简要步骤。
## 流程步骤
| 步骤 | 描述 |
|------|------|
| 1 | 安装必要的库 |
| 2 | 导入必要的模块 |
| 3
原创
2024-09-22 07:05:48
72阅读
不同于PCA方差最大化理论,LDA算法的思想是将数据投影到低维空间之后,使得同一类数据尽可能的紧凑,不同类的数据尽可能分散。它的数据集的每个样本是有类别输出的,投影后类间方差最大,类内方差最小LDA需要数据满足如下两个假设:原始数据根据样本均值进行分类不同类的数据拥有相同的协方差矩阵一般来说第2条很难满足,所以在实际使用中如果原始数据主要是根据均值来划分的,此时LDA降维效果很好,但是PCA效果就
转载
2024-07-05 21:39:12
78阅读
来源于CVPR2022的GroupNet,CAVE-based算是一个全新的东西,值得深入研究一下。其中变分推导的理解在下方。 *b站上有一个up主关于这个问题讲得很清晰(视频地址),本文是该视频的文字总结。Problem Definition 给定observation variable (比如RGB图片)和latent variable (比如是RGB图片经过encoder得到的latent
在本博文中,我将详细探讨“Python LDA分类斜率”这一技术挑战,涵盖提炼与分析过程中涉及的各类结构与方法。通过逻辑清晰的步骤和详尽的示例,实现LDA分类模型的建立与有效利用。
## 协议背景
在机器学习和数据挖掘领域,LDA(线性判别分析)是一种经典的分类方法,被广泛应用于文本分类、模式识别等任务。LDA试图最大化类别间的距离,并最小化同类样本间的距离,从而实现对分类斜率的优化。下图展示
分类器任务和数据介绍构造一个将不同图像进行分类的神经网络分类器, 对输入的图片进行判别并完成分类.本案例采用CIFAR10数据集作为原始图片数据.CIFAR10数据集介绍: 数据集中每张图片的尺寸是3 * 32 * 32, 代表彩色3通道CIFAR10数据集总共有10种不同的分类, 分别是"airplane", "automobile", "bird", "cat", "deer", "dog",
转载
2023-09-09 06:49:20
121阅读
(一)LDA作用
传统判断两个文档相似性的方法是通过查看两个文档共同出现的单词的多少,如TF-IDF等,这种方法没有考虑到文字背后的语义关联,可能在两个文档共同出现的单词很少甚至没有,但两个文档是相似的。
举个例子,有两个句子分别如下:
转载
2024-01-16 11:27:39
61阅读
文本主题模型提取如下程序将句子主题提取后,将权重值存入dataframe. #!/usr/bin/python
# -*- coding:utf-8 -*-
import pandas as pd
import numpy as np
import matplotlib as mpl
import math
import warnings
import jieba
from gensim imp
转载
2023-11-07 01:07:22
64阅读
AUC是指:从一堆样本中随机抽一个,抽到正样本的概率比抽到负样本的概率大的可能性! AUC是一个模型评价指标,只能用于二分类模型的评价,对于二分类模型,还有很多其他评价指标,比如logloss,accuracy,precision。如果你经常关注数据挖掘比赛,比如kaggle,那你会发现AUC和logloss基本是最常见的模型评价指标。为什么AUC和logloss比accuracy更常用呢?
“LDA(Latent Dirichlet Allocation)模型,模型主要解决文档处理领域的问题,比如文章主题分类、文章检测、相似度分析、文本分段和文档检索等问题。LDA主题模型是一个三层贝叶斯概率模型,包含词、主题、文档三层结构,文档到主题服从Dirichlet分布,主题到词服从多项式分布。它采用了词袋(Bag of Words)的方法,将每一篇文章视为一个词频向量,每一篇文档代表了一些主
转载
2023-07-31 21:53:21
166阅读
提要:本文主要介绍了和推导了LDA和PCA,参考了这篇博客 LDALDA的原理是,将带上标签的数据(点),通过投影的方法,投影到维度更低的空间中,使得投影后的点,会形成按类别区分,一簇一簇的情况,相同类别的点,将会在投影后的空间中更接近。要说明白LDA,首先得弄明白线性分类器(Linear Classifier):因为LDA是一种线性分类器。对于K-分类的一个分类问题,会有K个线性函数:
文章目录1 前言1.1 K近邻的介绍1.2 K近邻的应用2 二维数据集演示2.1 导入函数2.2 导入数据2.3 训练模型及可视化3 莺尾花数据集全数据演示3.1 导入函数3.2 导入数据3.3 训练模型及预测4 模拟数据集演示4.1 导入函数4.2 模拟数据集4.3 建模比较5 马绞痛数据+pipeline演示5.1 下载数据集5.2 导入函数5.3 填充空值5.4 建模计算6 讨论 1 前言
转载
2023-11-06 16:58:16
11阅读
Python机器学习算法实现Author:louwillMachine Learning Lab 线性判别分析(Linear Discriminant Analysis,LDA)是一种经典的线性分类方法。注意机器学习中还有一种用于NLP主题模型建模的潜在狄利克雷分布(Latent Dirichlet Allocation)也简称为L
转载
2023-12-26 16:50:54
126阅读
LDA(Latent Dirichlet Allocation)是一种文档主题生成模型,最近看了点资料,准备使用python实现一下。至于数学模型相关知识,某度一大堆,这里也给出之前参考过的一个挺详细的文档lda算法漫游指南这篇博文只讲算法的sampling方法python实现。完整实现项目开源python-LDA lda模型变量申请及初始化#
#伪代码
#
输入:文章集合(分词处理后)
转载
2023-05-28 19:47:08
97阅读