本文主要介绍了SBERT作者提供的官方模块的使用实战。
原创
2022-07-13 17:22:45
4047阅读
机器翻译(MT)是一项极具挑战性的任务,其研究如何使用计算机将文本或是语音从一种语言翻译成另一种语言。本文借助 Keras 从最基本的文本加载与数据预处理开始,并讨论了在循环神经网络与编码器解码器框架下如何才能构建一个可接受的神经翻译系统,本教程所有的代码已在 GitHub 开源。
传统意义上来说,机器翻译一般使用高度复杂的语言知识开发出的大型统计模型,但是近来很多研究使用深度模型直接
Hugging face 是一家总部位于纽约的聊天机器人初创服务商,开发的应用在青少年中颇受欢迎,相比于其他公司,Hugging Face更加注重产品带来的情感以及环境因素。官网链接在此 https://huggingface.co/ 。但更令它广为人知的是Hugging Face专注于NLP技术,拥有大型的开源社区。尤其是在github上开源的自然语言处理,预训练模型库 Transformers
转载
2024-08-21 11:55:16
92阅读
获取attention score的值,并使用matplotlib展示出来。
原创
2022-01-25 15:51:15
443阅读
获取attention score的值,并使用matplotlib展示出来。
原创
2021-07-08 14:53:40
1202阅读
本文基于PyTorch框架,实现了6种经典的深度学习中文文本分类模型,这些模型包括基于Transformer模型的Bert和ERNIE,以及结
原创
2024-04-05 15:30:09
0阅读
from transformers import AutoTokenizer, AutoModeltokenizer = AutoTokenizer.from_pretrained("canwenxu/BERT-of-Theseus-MNLI")model =
原创
2022-04-29 15:01:47
168阅读
本文框架:BERT模型的任务:
1、模型的输入、输出分别是什么,以及模型的预训练任务是什么;
2、分析模型的内部结构,图解如何将模型的输入一步步地转化为模型输出;
3、在多个中/英文、不同规模的数据集上比较BERT模型与现有方法的文本分类效果。1. 模型的输入/输出BERT模型的全称是:BidirectionalEncoder Representations from Transformer。从名
转载
2023-08-08 11:13:24
199阅读
1.前言bert是非常出名的预训练模型,它在很少的数据也能有很好的表现。 在我们将要引出bert模型时,先来简单diss其他常见模型的缺点吧!!diss Word2vec word2vec 不能解决一词多义,也不能解决OOV问题,生成的句子和文档向量也差强人意diss RNN 最出名的缺点是:不能并行,训练速度太慢了diss CNN 虽然可以并行,但太适用于分类任务了,用在其他NLP任务上,效果
从头预训练一个针对的那1个任务的3层BERT,保持预训练和inference时的一致性,速度加速4倍,精度不变。
原创
2022-07-19 11:52:30
140阅读
1 . 引言近年来,预训练模型在自然语言处理(Natural Language Processing, NLP)领域大放异彩,其中最重要的工作之一就是Google于2018年发布的BERT预训练模型[1]。
转载
2020-04-28 16:59:36
151阅读
很多数据集都是英文的,比如多标签文本数据集、层次结构标签文本数据集,想
原创
2023-01-17 10:58:18
304阅读
BERT是Google公司在2018年提出的基于深层Transformer的预训练语言模型。BERT不仅充分利用了大规模无标注文本来挖掘其中丰富的语义信息,同时还进一步加深了NLP模型的深度。1. 整体结构BERT的基本模型结构由多层Transformer构成,包含两个预训练任务:掩码语言模型(MLM)和下一个句子预测(NSP)。如下图所示:
模型输入:[CLS] + Masked Sen
转载
2023-12-21 15:09:30
144阅读
利用Bert的过程是基本一样的,核心过程都是用Transformer作为特征抽取器,用Bert预训练模型初始化Transformer的参数,然后再用当前任务Fine-tuning一下,仅此而已。在应用Bert的时候,真正使用某个应用的数据,是在第二阶段Fine-tuning阶段,通过用手头任务的训练数据对Transformer进行训练,调整参数,将Transformer的参数针对手头任务进行Fin
转载
2024-04-17 12:02:18
69阅读
动手学深度学习笔记一、BERT1.BERT:把两个结合起来2.BERT的输入表示3.编码器4.预训练任务掩蔽语言模型下一句预测5.整合代码二、用于预训练BERT的数据集1.下载并读取数据集2.生成下一句预测任务的数据3.生成遮蔽语言模型任务的数据4.将文本转换为预训练数据集三、预训练BERT1.预训练2.用BERT表示文本 一、BERT在word2vec和GloVe中,每个词都是由一个固定的预训
转载
2024-06-27 17:35:59
71阅读
2019-10-09 19:55:26 问题描述:谈谈对Bert的理解。 问题求解: 2018年深度学习在NLP领域取得了比较大的突破,最大的新闻当属Google的BERT模型横扫各大比赛的排行榜。 NLP领域到目前为止有三次重大的突破:Word Embedding、Self-Attention机制
转载
2019-10-09 19:56:00
855阅读
2评论
代码如下 没有数据集 只有大体框架/代码可运行import math
import re
from random import *
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
# sample IsNext and NotNext to be same in small bat
转载
2023-11-16 21:27:19
69阅读
一、背景对于算法工程师来说,通常采用python语言来作为工作语言,但是直接用python部署线上服务性能很差。这个问题困扰了我很久,为了缓解深度学习模型工程落地性能问题,探索了Nvidia提供的triton部署框架,并在九数中台上完成线上部署,发现性能提升近337%!!(原服务单次访问模型推理时间175ms左右,同模型框架单次访问推理时间缩减至40ms左右)。本文仅以本次部署服务经验分享给诸多受
原创
精选
2024-04-01 10:04:20
171阅读