文章目录与近似KL散度分贝平均场分族(mean-field variational family)MCMC黑盒分推断(BBVI)参考   推断的优势在于可以结合一些我们已知的先验信息。对于复杂的一些问题建模也非常灵活,很适合用于应用统计方面的工作。但是模型有一些问题,如果用传统的MCMC来求的话速度会非常慢,而现今问题的数据量和维度都比较大,在这样的问题上做
朴素决策理论朴素法是基于贝叶斯定理与特征条件独立假设的分类方法。简单来说,朴素贝叶斯分类器假设样本每个特征与其他特征都不相关。朴素贝叶斯分类器的一个优势在于只需要根据少量的训练数据估计出必要的参数(离散型变量是先验概率和类条件概率,连续型量是变量的均值和方差)。 用 p1(x,y) 表示数据点 (x,y) 属于类别 1的概率,用 p2(x,y) 表示数据点 (x,y) 属于类别 2
概率论只不过是把常识用数学公式表达了出来。——拉普拉0. 前言这是一篇关于方法的科普文,我会尽量少用公式,多用平白的语言叙述,多举实际例子。更严格的公式和计算我会在相应的地方注明参考资料。方法被证明是非常 general 且强大的推理框架,文中你会看到很多有趣的应用。 1. 历史托马斯·(Thomas Bayes)同学的详细生平在这里。以下摘一段 wikipedia 上的简介:
真的理解公式吗? 钵仔糕   2017-01-30 大家经常看到的公式(Bayes)是写成如下图的形式,通常以P(A|B),P(B|A)的形式表示,虽然数学上看着简单,那到底A,B是什么意思,应该怎么去理解呢,然后怎么运用于实际情况呢? 由观察到的现象(或是测量的数据)去推断现象(或是数据)后面的规律(或是假设)的发生的概率的问题。那么如果将上面公式中的A
自我理解算法也就是通过概率来判断C是属于A类还是B类,下面是具体代码(python3.5 测试通过)文字流程解释一波  1 )  加载训练数据和训练数据对应的类别  2)   生成词汇集,就是所有训练数据的并集  3)   生成训练数据的向量集,也就是只包含0和1的向量集  4)   计算训练数据的各个概率  5)   加载测试数据
基于决策理论的分类方法优点:在数据较少的情况下仍然有效,可以处理多类别问题缺点:对输入数据的准备方式比较敏感,需要标称数据.确定最优假设的计算代价较大朴素决策理论的一部分.决策理论的核心思想:一个数据集包括2类(或两类以上)数据,这些数据有一些维度,如果已知一个数据的特征,由该特征得到其属于第一类的可能性p1(x,y) p
        学期末的综述报告我选择了分类,既然已经写了就将它分享一下。 主要目的就是以教促学。   如有问题欢迎在评论区进行讨论。        随着现代社会信息技术的发展,对于数据的挖掘越来越重要,分类是数据挖掘中应用领域极其广泛的技术之
"""参考:https://github.com/gwgundersen/bocd/blob/master/bocd.py""""""============================================================================Python implementation of Bayesian online changepoint dete
原创 2022-07-18 12:35:08
867阅读
朴素算法(1)超详细的算法介绍朴素算法(2)案例实现github代码地址引言关于朴素算法的推导过程在朴素算法(1)超详细的算法介绍中详细说明了,这一篇文章用几个案例来深入了解下算法在三个模型中(高斯模型、多项式模型、伯努利模型)的运用。案例一:多项式模型特征属性是症状和职业,类别是疾病(包括感冒,过敏、脑震荡) 某个医院早上收了六个门诊病人,如下表:症状职业疾病打喷嚏
朴素(Naive Bayes)=  Naive + Bayes 。(特征条件独立 + Bayes定理)的实现。零、贝叶斯定理(Bayes' theorem)所谓的方法源于他生前为解决一个“逆概”问题写的一篇文章,而这篇文章是在他死后才由他的一位朋友发表出来的。在写这篇文章之前,人们已经能够计算“正向概率”,如“假设袋子里面有N个白球,M个黑球,你伸手进去摸一把,摸出黑球
我们经常会在Excel表格中进行数据的核对修改,如果要在第一时间知道哪些数据被修改过,通过对修改过的数据做出标记是快速识别这类数据的好方法。利用Excel的有关组件,我们就可以实现被修改数据的标记功能。下面,我们以在Excel 2019中操作为例来说明。        1. 用好突出显示修订 修改数据轻松标记    
一、决策  决策论是概率框架下实施决策的基本方法,对分类任务来说,在所有相关概率已知的理想情形下,考虑如何基于这些概率和误判损失来选择最优的类别标记。      朴素分类算法是基于贝叶斯定理与特征条件独立假设的分类方法。1、条件概率  概率指的是某一事件A发生的可能性,表示为P(A)。  条件概率指的是某一事件A已经发生了条
                                                 主观bayes推理主观方法的概率论基础全概率公
贝叶斯定理是用来描述两个条件概率之间的关系,比如 P(A|B) 和 P(B|A)。按照乘法法则,可以立刻导出:P(A∩B) = P(A)*P(B|A)=P(B)*P(A|B)。如上公式也可变形为:P(B|A) = P(A|B)*P(B) / P(A)。的统计学中有一个基本的工具叫公式、也称为法则, 尽管它是一个数学公式,但其原理毋需数字也可明了。如果你看到一个人总是做一些好事,则
一、概述  算法是一系列分类算法的总称,这类算法均是以贝叶斯定理为基础,所以将之统称为分类。而朴素(Naive Bayesian)是其中应用最为广泛的分类算法之一。  朴素贝叶斯分类器是基于一个简单的假定:给定目标值时属性之间相互条件独立。二、核心思想  用p1(x, y)表示数据点(x, y)输入类别1的概率,用p2(x, y)表示数据点(x, y
# Python实现步骤 作为一名经验丰富的开发者,我将教给你如何实现Python算法。下面是整个实现过程的流程。 | 步骤 | 操作 | | ---- | ---- | | 1. | 收集数据 | | 2. | 准备数据:将数据转换为适合进行算法的格式 | | 3. | 分析数据:使用公式计算概率 | | 4. | 训练算法:从数据中计算出概率 | |
原创 2023-07-22 18:18:03
92阅读
辨析极大似然估计,朴素贝叶斯分类器,半朴素贝叶斯分类器等   理论应用于机器学习方面产生了多种不同的方法和多个定理,会让人有些混淆。主要有最大后验概率,极大似然估计(MLE),朴素贝叶斯分类器,还有一个最小描述长度准则。\(\lambda_{ij}\)是将实为\(c_j\)的样本标记为\(c_i\)的损失,则将样本\(x\)标记为\(c_i\)的期
的原理类似于概率反转,通过先验概率推导出后验概率。其公式如下: 在大数据分析中,该定理可以很好的做推导预测,很多电商以及用户取向可以参照此方式,从已有数据推导出未知数据,以归类做后续操作。例如,在一个购房机构的网站,已有8个客户,信息如下:用户ID年龄性别收入婚姻状况是否买房127男15W否否247女30W是是332男12W否否424男45W否是545男30W是否656男32W是是731男1
一、朴素分类简介朴素(Naive Bayesian)是基于贝叶斯定理和特征条件独立假设的分类方法,它通过特征计算分类的概率,选取概率大的情况进行分类,因此它是基于概率论的一种机器学习分类方法。因为分类的目标是确定的,所以也是属于监督学习。朴素有如下几种:离散型朴素: MultinomialNB连续型朴素: GaussianNB混合型朴素: MergedNB二、原
朴素斯基础基本概念:条件概率:指事件 AB 已经发生条件下的概率 贝叶斯定理:P(AB)=P(A∣B)∗P(B)--->先验概率:先验概率(Prior Probability)指的是根据以往经验和分析得到的概率。例如以上公式中的 P(A),P(B)P(A),P(B),又例如:XX的概率 P(X)=0.5P(X)=0.5 。其中&
  • 1
  • 2
  • 3
  • 4
  • 5