引言  深度卷积网络的蓬勃发展使目标检测取得了很大的进展,一般来说,在基于神经网络的检测器中,骨干网络用于提取检测目标的基本特征,通常最初设计用于图像分类,并在ImageNet数据集上进行预训练,从直观上看,骨干网络提取的代表性特征越多,其检测器的性能越好,简单地说,一个更强大的骨干带来更好的检测性能。从AlexNet开始,主流探测器已经利用了更深更宽的主干,如VGG, ResNet, Dense
Abstract尽管图像分类的表现不断地有提升,但大多数应用如目标检测和语义分割仍采用ResNet的变体作为主干网络,因为它很简单,而且是模块化的结构。本文提出了一个简单而模块化的 split-attention 模块,使我们可以在特征图分组里实现注意力机制。通过堆叠这些 split-attention模块,像 ResNet一样,我们可以得到一个新的 ResNet 变体,称作 ResNeSt。本网
简介在轻量级网络上的研究表明,通道注意力会给模型带来比较显著的性能提升,但是通道注意力通常会忽略对生成空间选择性注意力图非常重要的位置信息。因此,新加坡国立大学的Qibin Hou等人提出了一种为轻量级网络设计的新的注意力机制,该机制将位置信息嵌入到了通道注意力中,称为coordinate attention(简称CoordAttention,下文也称CA),该论文已被CVPR2021收录。不同于
摘要:ResNest主要贡献是设计了一个Split-Attention模块,可以实现跨通道注意力。通过以ResNet样式堆叠Split-Attention块,获得了一个ResNet的变体。ResNest网络保留了完整的ResNet结构,可以直接用下游任务,而不会引起额外的计算成本。ResNest在分类、FasterRCNN、DeeplabV3上都有提升。动机:著名的ResNet是针对图像分类设计的
转载 2024-03-11 16:20:12
638阅读
1。 序言首先,我是看这两篇文章的。但是,他们一个写的很笼统,一个是根据Encoder-Decoder和Query(key,value)。第二个讲的太深奥了,绕来绕去,看了两天才知道他的想法。 这个是讲的很笼统的 这个是讲的太深奥的。本文 的一些基础知识还是基于第二个博客展开。但是我通过两张图可以直接让你明白attention和LSTM在一起的组合。2. Attention+LSTM2.1 A
论文地址:https://arxiv.org/pdf/2102.00240.pdf Github地址:https://github.com/wofmanaf/SA-Net/blob/main/models/sa_resnet.py注意机制使神经网络能够准确地聚焦于输入的所有相关元素,已成为改善深层神经网络性能的重要组成部分。计算机视觉研究中广泛使用的注意机制主要有两种:空间注意力和通道注意力,它们
创建水箱强化学习模型问题描述行动与观测奖励信号终止信号创建环境对象重置函数 本示例说明如何创建一个水箱强化学习Simulink®环境,该环境包含一个RL Agent块来代替用于水箱中水位的控制器。要模拟此环境,必须创建一个智能体并在RL智能体块中指定该智能体。问题描述如果直接在matlab使用open_system('rlwatertank')则会报错 No system or file cal
 【数据标注处理】  1、先将下载好的图片训练数据放在models-master/research/images文件夹下,并分别为训练数据和测试数据创建train、test两个文件夹。文件夹目录如下    2、下载 LabelImg 这款小软件对图片进行标注  3、下载完成后解压,直接运行。(注:软件目录最好不要存在中文,否则可能会报错)  4、设置图片目录,逐张打开
最近找了十几篇神经网络注意力机制的论文大概读了一下。这篇博客记录一下其中一篇,这篇论文大概只看了摘要,方法和参数初始化部分。文中提出RADC-Net(residual attention based dense connected convolutional neural network),网络中由三种结构组成,密集连接结构(dense connection structure)、残差注意力块(r
深度学习中的注意力机制(Attention Mechanism)是一种模仿人类视觉和认知系统的方法,它允许神经网络在处理输入数据时集中注意力于相关的部分。通过引入注意力机制,神经网络能够自动地学习并选择性地关注输入中的重要信息,提高模型的性能和泛化能力。卷积神经网络引入的注意力机制主要有以下几种方法:在空间维度上增加注意力机制在通道维度上增加注意力机制在两者的混合维度上增加注意力机制我们将在本系列
识别不显著特征是模型压缩的关键。然而,这一点在注意力机制中却没有得到研究。在这项工作中提出了一种新的基于规范化的注意力模块(NAM),它抑制了较少显著性的权值。它对注意力模块应用一个权重稀疏惩罚,因此,在保持类似性能的同时,使它们更有效地计算。通过与ResNet和MobileNet上其他三种注意力机制的比较,表明本文的方法具有更高的准确性。NAM: Normalization-based Att
Coordinate Attention for Efficient Mobile Network Design论文:https://arxiv.org/abs/2103.02907代码链接(刚刚开源):https://github.com/Andrew-Qibin/CoordAttention本文提出Coordinate Attention,CA,可以插入到Mobile Network中,可以使
文章目录摘要1 介绍2 相关工作3 卷积块注意模块(CBAM)3.1 通道注意力模块3.2 空间注意力模块3.3 注意力模块的排列4 实验4.1 消融研究4.1.1 探索计算通道注意的有效方法4.1.2 探索计算空间注意的有效方法4.1.3 如何结合通道和空间注意模块4.1.4 总结4.2 在ImageNet-1K的图像分类4.3 使用Grad-CAM进行网络可视化4.4 MS COCO目标检测
注意力机制主要运用在自然语言理解当中,但是随着深度学习的发展,注意力机制也引进了计算机视觉当中,本文是将计算机视觉中的注意力机制进行了进一步的总结与提炼,将之前的注意力机制提炼为了注意力模块,并将多个这样的注意力模块有机组合在一起,从而网络深度越深,所获得的效果越好,这一个网络架构就叫做残差注意力网络,并在Imagenet上取得了不错的提升。本文主要创新点:使用了stacked network s
resnet发展历程 论文地址:https://arxiv.org/pdf/1903.06586.pdf代码地址:https://github.com/pppLang/SKNet1.是什么?SK-net网络是一种增加模块嵌入到一些网络中的注意力机制,它可以嵌入和Resnet中进行补强,嵌入和方法和Se-net类似。SKNet的全称是“Selective Kernel Network”,
目录前言论文注意力机制Squeeze-and-Excitation (SE) 模块第一步Squeeze(Fsq)第二步excitation(Fex)SE注意力机制应用于inception和ResNet前言        在深度学习领域,CNN分类网络的发展对其它计算机视觉任务如目标检测和语义分割都起到至关重要的作用,因
辣椒病虫害图像识别一些基础数据准备引入包及解压获得图片的路径及标签图片读取为numpy类型划分训练集和测试集数据读取器设置一些参数并读取数据模型的训练定义训练函数开始训练保存模型测试加载模型读取测试数据集转成numpy定义测试函数并测试将结果写入csv文件 一些基础os.walk是获取所有的目录, 产生3-元组 (dirpath, dirnames, filenames)【文件夹路径, 文件夹名
转载 2024-10-30 10:36:43
30阅读
下图来自:https://baijiahao.baidu.com/s?id=1683481435616221574&wfr=spider&for=pc     该任务是实现图文转换。  这里编码器是VGG,解码器是LSTM。LTSM输入是不同时刻的图片的关注点信息,然后生成当前时刻的单词。  
转载 2023-10-08 10:12:20
182阅读
# Res2Net架构科普 ## 引言 在深度学习的研究与应用中,卷积神经网络(CNN)是图像处理领域的基石。而Res2Net架构是一种新型的卷积神经网络架构,它在传统残差网络(ResNet)的基础上进行了一系列创新,旨在提升模型的特征表达能力。本文将介绍Res2Net的基本原理、结构特点、应用领域,并给出代码示例。 ## Res2Net的背景 ResNet(Residual Networ
原创 2024-09-15 03:59:08
229阅读
目录abstractintrobackgroundsignal propagation plots(SPP)scaled weight standardizationdetermining nonlinerity-specific constants γ
  • 1
  • 2
  • 3
  • 4
  • 5