容易忽略的4.0细节:强制GPU渲染     你也许会觉得Android4.0的升级之处不够多,无法让你有足够动力升级,但很多东西是隐藏在其中等待发掘的。倘若你此前对于Android系统的流畅度(好吧,尤其是应用程序的流畅度)不满,一定不要错过这篇小测试噢,或许它就能够帮助你大幅提高你Android4.0手机的流畅度。好了,废话不多说,让我们赶紧开始测试吧。&nbs
//part 1是针对与原来的10系列显卡,20系列的显卡使用因为cuda版本的问题会有问题,因此如果是20系列的显卡直接看part2part 1:(for gtx10*)一.环境安装:1.依赖库安装基本的依赖库安装sudo apt install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-d
作者 | Pegessi  编辑 | 极市平台导读本篇文章主要介绍如何利用CUDA实现一个2D卷积算子,实现过程较为简单,最终的实现效果可以在较小的尺寸下取得比cudnn快较大的性能。实测在以下参数配置下可以达到平均1.2倍cudnn的性能。前言CUDA介绍(from chatGPT) 现在深度学习大行其道,作为深度学习的基础软件设施,学习cuda也是很有
javascript如何实现gpu加速?下面本篇文章给大家介绍一下。有一定的参考价值,有需要的朋友可以参考一下,希望对大家有所帮助。一、什么是Javascript实现GPU加速?CPU与GPU设计目标不同,导致它们之间内部结构差异很大。CPU需要应对通用场景,内部结构非常复杂。而GPU往往面向数据类型统一,且相互无依赖的计算。所以,我们在Web上实现3D场景时,通常使用WebGL利用GPU运算(大
深度学习100例——卷积神经网络(CNN):乳腺癌识别? 作者:K同学啊我的环境 文章目录深度学习100例——卷积神经网络(CNN):乳腺癌识别一、 设置GPU二、导入数据2.1 导入数据2.2 检查数据2.3 配置数据集2.4 数据可视化三、构建模型四、编译五、训练模型六、评估模型6.1 Accuracy与Loss图6.2 混淆矩阵6.3 各项评估指标 一、 设置GPUimport tensor
0.深入理解GPU训练加速原理我们都知道用GPU可以加速神经神经网络训练(相较于CPU))GPU是如何加速的呢?我打算从两个方面来解答:单个GPU较于CPU加速:在训练网络中,其实大量的运算资源都消耗在了数值计算上面,大部分网络训练的过程都是1.计算loss,2.根据loss求梯度,3.再根据梯度更新参数(梯度下降原理)。无论在GPU还是CPU中,都是不断重复123步。但是由于CPU是通用计算单元
实验介绍相对CPU来说,GPU更适合处理高度并行化的程序,此次实验借助CUDA架构,C++编码实现在GPU的矩阵快速相乘,实验中用到了CUDA的相关知识,如cudaMalloc,cudaMemcpy,cudaFree;clock_t,gettimeofday计算运行时间;线程块二维分布和一个线程块的线程数为256。与在CPU中的完成速度对比。采用内核函数,运用GPU的并行处理,对两个矩阵进行相乘(
转载 2024-04-05 18:47:26
154阅读
什么是 GPU 加速的计算? GPU 加速计算是指同时采用图形处理单元 (GPU) 和 CPU,以加快科学、分析、设计、消费者和企业应用程序的速度。GPU 加速器于 2007 年由 NVIDIA 率先推出,现已在世界各地为政府实验室、大学、公司以及中小型企业的高能效数据中心提供支持。GPU 能够为从汽车、手机和平板电脑到无人机和机器人等平台的应用程序加快速度。 如何部署 GPU 加速应用 理解
转载 2023-07-31 23:44:02
89阅读
准备阶段:安装vs跟opencv就不说了。安装cuda6.5:先用鲁大师之类的软件看看是什么显卡,然后在网上看看你的显卡是否支持cuda(https://developer.nvidia.com/cuda-gpus),其实一般的英伟达显卡都支持的了。再去下载cuda安装包(https://developer.nvidia.com/cuda-toolkit-archive),至于下载那个版本,这个不
转载 2023-11-26 19:59:53
335阅读
概念FLOPS:一个单位,每秒所执行的浮点运算次数,用来表征硬件运算能力。 CUDA:统一计算架构;NVIDIA;加速NVIDIA GPU的计算。 CPU:中央处理器;AMD,Intel等。 TPU:张量处理器;GOOGLE;专为加速tensorflow而设计。目前市面上除了TPU还有许多其他的AI加速器。 GPU:图形处理器;NVIDIA,AMD,Intel等。 GPGPU:图形处理器上的通用计
环境搭建VS 2019 CUDA 10.2 CUDNN Cmake 3.18.1OpenCV 4.4.0opencv-contribe 4.4.0 编译步骤1、打开Cmake,选择opencv4.4.0源码路径,选择编译完成之后的保存路径,选择VS版本。 2、等待configure完成之后,可能会出现下载的错误,具体就是xfeatures2d、FFMPEG、IPPICV的下载错误,如图: 因为下载
转载 2023-12-18 15:38:06
68阅读
综合CPU 和 GPU运算时间区别加速计算 神经网络本质上由大量的矩阵相乘,矩阵相加等基本数学运算构成,TensorFlow 的重 要功能就是利用 GPU 方便地实现并行计算加速功能。为了演示 GPU加速效果,我们通 过完成多次矩阵 A 和矩阵 B 的矩阵相乘运算的平均运算时间来验证。其中矩阵 A 的 shape 为[1,?],矩阵 B 的 shape 为[?, 1],通过调节 n
Pytorch教程目录Torch and Numpy变量 (Variable)激励函数关系拟合(回归)区分类型 (分类)快速搭建法批训练加速神经网络训练Optimizer优化器卷积神经网络 CNN卷积神经网络(RNN、LSTM)RNN 循环神经网络 (分类)RNN 循环神经网络 (回归)自编码 (Autoencoder)DQN 强化学习生成对抗网络 (GAN)为什么 Torch 是动态的目录Pytorch教程目录用 GPU 训练 CNN全部代码用 GPU 训练 CNN
原创 2021-07-09 14:53:56
1076阅读
目录2D卷积3D卷积1*1卷积空间可分离卷积(separable convolution)深度可分离卷积(depthwise separable convolution)分组卷积(Group convolution)扩张卷积(空洞卷积 Dilated Convolutions)反卷积(转置卷积 Transposed Convolutions)octave convolution
本文主要介绍用CUDA实现矩阵运算(C = A x B)的几个基本方法,帮助大家理解矩阵在GPU上面的运算与CPU上的有何异同,通过实践上手CUDA的优化计算,相比基础方法,能提速10倍以上。本文内容涉及到CUDA矩阵1D运算,2D运算,共享内存,CUBLAS的使用文中的全部code:https://github.com/CalvinXKY/BasicCUDA/tree/master/matrix
转载 2024-05-13 14:47:24
518阅读
学习总结1.计算机组成: 五大组成部分  控制器:统筹规划硬件与软件的运行,调控计算机各组成部分协调合作 运算器:可以完成数据的 算数运算 与 逻辑运算,得到想要的结果 存储器:需要再次使用的数据可以通过存储器进行 临时 或 永久存储 输入input设备:将外界的信息,通过输入设备,提供给计算机 输出output设备:从计算机内部提前想要
为了提高大规模数据处理的能力,matlab 的 GPU 并行计算,本质上是在 cuda 的基础上开发的 wrapper,也就是说 matlab 目前只支持 NVIDIA 的显卡。1. GPU 硬件支持首先想要在 matlab 中使用 GPU 加速运算,需要计算机配备有 NVIDIA 的显卡,可在 matlab 中运行:>> gpuDevice如果本机有 GPU 支持,会列出 CUD
转载 2017-02-28 15:52:00
1157阅读
2评论
序言前段时间在研究SceneKit,感觉到iOS 系统有很多有趣又好玩的东西,我个人是比较喜欢折腾这些技术的,在研究SceneKit 的时候,发现它有两套渲染机制,OpenGL 和 Matal ,OpenGL 还算比较熟悉,但是Metal部分就不太清除,于是决定好好研究,一下这磨人的小妖精。初步了解1.什么是Matal?Metal 是一个和 OpenGL ES 类似的面向底层的图形编程接口,通过使
转载 2024-01-21 06:11:31
154阅读
当设计者试图从算法中获得最佳性能但软件方法已无计可施时,可以尝试通过硬件/软件重新划分来进行加速。FPGA易于实现软件模块和硬件模块的相互交换,且不必改变处理器或进行板级变动。本文阐述如何用FPGA来实现算法的硬件加速。  如果想从代码中获得最佳性能,方法包括优化算法、使用查找表而不是算法、将一切都转换为本地字长尺寸、使用注册变量、解开循环甚至可能采用汇编代码。如果所有这些都不奏效,可以
转载 2024-08-29 13:03:14
193阅读
3、位运算代替乘除法在所有的运算中,位运算是最为高效的。因此,可以尝试使用位运算代替部分算术运算,来提高系统的运行速度。比如在HashMap的源码中使用了位运算static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16 static final int MAXIMUM_CAPACITY = 1 << 30;对于
转载 2023-11-15 18:37:59
57阅读
  • 1
  • 2
  • 3
  • 4
  • 5