混合态\(\def\vec#1{\boldsymbol{#1}}\) \(\def\bra#1{\langle#1|}\) \(\def\ket#1{|#1\rangle}\) \(\def\dirac#1#2{\langle#1|#2\rangle}\) 如果系统并非处于一个态中,而是以概率\(p_1\)处于\(\ket{\psi_1}\),以概率\(p_2\)处于态\(\ket{\psi_2}
GMM与聚类一样属于无监督学习统计模型,用以拟合数据的分布特征。本文是根据下面的博客进行改编,输入图片路径便可以直接进行分割(包括普通光学图像、微波图像、SAR图像、遥感图像等)。本例属于二分分割,后面有空再呈上多分分割例子。运行该代码需要修改两个地方:修改1:src_image = Image.open('face.bmp')  #需修改这里图片的路径 修改2:图像类型选择
1.高斯混合模型概念高斯混合模型(Gaussian Mixture Model)是一种聚类算法,它是多个高斯分布函数的线性组合,通常用于解决同一集合下的数据包含多种不同的分布情况。 高斯混合模型是指具有如下形式的概率分布模型: 其中K为高斯混合模型中成分的个数,g为高斯分布密度,均值是协方差矩阵是,另外是每个成分的权重。 例如如图下所示,是两个高斯分量叠加而成的一维GMM: 则上图
1.GMM(高斯混合模型)1.1GMM概述         1 GMM与K-means相比较属于软分类实现的方法是期望最大化(E-M算法)停止的条件:达到收敛主要分为两个步骤:训练与预言1.2原理讲解        高斯
前言现有的图像中目标的分类常用深度学习模型处理,但是深度学习需要大量模型处理。对于明显提取的目标,常常有几个明显特征,利用这几个明显特征使用少量图片便可以完成图像目标分类工作。这里介绍使用高斯混合模型GMM处理图像。常用算子及流程 1. 先提取特征,提取区域特征(或者边缘,灰度特征等) *计算区域圆度 circularity(区域,圆度值) *计算区域面积 area_center(区域,面积) *
1.高斯混合模型概述高斯密度函数估计是一种参数化模型。高斯混合模型(Gaussian Mixture Model, GMM)是单一高斯概率密度函数的延伸,GMM能够平滑地近似任意形状的密度分布。高斯混合模型种类有单高斯模型(Single Gaussian Model, SGM)和高斯混合模型(Gaussian Mixture Model, GMM)两类。类似于聚类,根据高斯概率密度函数(Proba
 01. 高斯混合模型简介高斯混合模型(Gaussian Mixed Model,GMM)和隐马尔可夫模型(Hidden Markov Model, HMM)是语音算法中常用的统计模型。HMM前面已经讲过了,这里介绍一下GMM算法。当数据分布中有多个峰值的时候,如果使用单峰分布函数去拟合会导致结果不佳,这时候可以使用具有多个峰值的分布去拟合,如下图所示,可以明显的看到使用两个峰值的高斯模
一.基本知识点补充:图解法分析动态范围和失真类型1.动态范围        其中,为了使得晶体管不进入饱和区和截止区,ICQ和VCEQ应该满足条件:               &
文章目录前言一、图像分类任务介绍1.图像分类是什么?2.图像分类如何实现?3.图像分类用来干什么?二、GoogLeNet论文解读1.挑战及创新工作2.Inception模块介绍3.Python代码实现三、总结 前言图像分类是计算机视觉中最基础的任务,学者对于分类任务的研究进程,基本上等价于深度学习模型的发展史。GoogLeNet是2014年ImageNet比赛的冠军模型,由谷歌工程师设计的网络结
图像分类”作为人工智能领域的重要基础任务,早已在安防监控、智慧交通、医疗影像诊断甚至社交娱乐等行业被广泛应用,成为AI从业者的“必备技能”,例如安防系统中的人体属性识别;文档电子化、卡证识别中的图片方向校准;辅助驾驶中的交通标识、红绿灯状态识别等等,都离不开图像分类技术的支持。图1 PaddleClas图像分类应用示意图然而,在实际产业应用中,想要得到一个既快又好的分类模型依然面临很多挑战:大模
平时比较喜欢做笔记复盘,做笔记看起来费时费力,其实是有比较多的好处:及时进行巩固,避免过段时间遗忘,能快速找到之前的资料在进行记录的时候其实也在将知识点转成自己的理解输出,强化理解,并且整个思路框架也会更清晰每次进行复盘后,做的不好的地方下次改进,做的好的经验,继续保持,会更加地高效,这也是学习能力很重要的一部分这里记录一下之前做的图像分类模型的一些经验总结,用目前多任务layer4的BN分流+s
\u0026#xD;\u0026#xD; 一、介绍\u0026#xD;\u0026#xD; 图像分类是计算机视觉中的一个基本问题,是多种视觉任务的基础,如目标检测、图像分割、目标跟踪、行为识别和自动驾驶等。自从2012年的ImageNet挑战赛AlexNet模型取得重大突破,深度神经网络(DNN)已经成了这个领域的中坚力量。自此之后,出现了越来越深的DNN模型和越来越复杂的结构。尽管这些模型
高斯模型就是用高斯概率密度函数(正态分布曲线)精确地量化事物,将一个事物分解为若干的基于高斯概率密度函数(正态分布曲线)形成的模型。对图像背景建立高斯模型的原理及过程: - 图像灰度直方图反应的是图像中某个灰度值出现的频次,也可以认为是图像灰度概率密度的估计。 - 如果图像所包含的目标区域和背景区域相差比较大,且背景区域和目标区域在灰度上有一定的差异,那么该图像的灰度直方图呈现双峰-谷形状,其
译者 | VK概述了解如何使用计算机视觉和深度学习技术处理视频数据我们将在Python中构建自己的视频分类模型这是一个非常实用的视频分类教程,所以准备好Jupyter Notebook介绍我们可以使用计算机视觉和深度学习做很多事情,例如检测图像中的对象,对这些对象进行分类,从电影海报中生成标签。这一次,我决定将注意力转向计算机视觉中不太引人注目的方面-视频!我们正以前所未有的速度消费视频
第四讲_图像识别之图像分类Image Classification目录图片分类性能指标:top1,top5ILSVRC:每种任务数据集不一样imageNet:根据WorldNet组织的图片集,为每个名词提供平均1000张图片网络进化卷积神经网络(CNN)基础神经网络:神经元(输入,w,b,sigmoid)优化:梯度下降,BP反向传播(链式规则),3~5层优化交叉熵(之前是均方误差):批量梯度下降,
@Author:Runsen在过去的几年里,许多深度学习模型涌现出来,例如层的类型、超参数等。在本系列中,我将回顾几个最显着的 deeplearn 图像分类模型。 文章目录AlexNet (2012 )VGG (2014)GoogleNet (2014)ResNet (2015)Inception v3 (2015)SqueezeNet (2016)DenseNet (2016)Xception
PyTorch实战mnist图像分类项目结构项目代码 项目结构项目结构如图,代码都放在mnistclassify.py里面,data数据是代码执行过程中自己下载的。项目代码导入包,构建训练集测试集from random import shuffle from turtle import forward import torch import torch.nn as nn import torch
        本月1日起,上海正式开始了“史上最严“垃圾分类的规定,扔错垃圾最高可罚200元。全国其它46个城市也要陆续步入垃圾分类新时代。各种被垃圾分类逼疯的段子在社交媒体上层出不穷。top-5测试集回归2.25%错误率的成绩可谓是技压群雄,堪称目前最强的图像分类器。年份网络/队名top-5-5备注2012AlexNet16.42%5层CNNs2013C
Attention模型的基本表述可以这样理解成: 当我们人在看一样东西的时候,我们当前时刻关注的一定是我们当前正在看的这样东西的某一地方,换句话说,当我们目光移到别处时,注意力随着目光的移动也在转移。 这意味着,当人们注意到某个目标或某个场景时,该目标内部以及该场景内每一处空间位置上的注意力分布是不一样的。 这一点在如下情形下同样成立:当我们试图描述一件事情,我们当前时刻说到的单词和句子和正在描述
转载 2024-03-07 12:36:23
118阅读
 前言深度学习中的Attention,源自于人脑的注意力机制,当人的大脑接受到外部信息,如视觉信息、听觉信息时,往往不会对全部信息进行处理和理解,而只会将注意力集中在部分显著或者感兴趣的信息上,这样有助于滤除不重要的信息,而提升信息处理的效率。最早将Attention利用在图像处理上的出发点是,希望通过一个类似于人脑注意力的机制,只利用一个很小的感受野去处理图像中Attention的部分
转载 2024-03-07 17:03:39
178阅读
  • 1
  • 2
  • 3
  • 4
  • 5