Tensorflow2.0笔记本博客为Tensorflow2.0学习笔记,感谢北京大学微电子学院曹建老师目录Tensorflow2.0笔记4 损失函数4.1 均方误差损失函数4.2 交叉熵损失函数4.3 自定义损失函数4 损失函数 神经网络模型的效果及优化的目标是通过损失函数来定义的。回归和分类是监督学习中的两个大类。4.1 均方误差损失函数 均方误差(Mean Square Error)是回归问
对数函数值/最大近估计/log likelihood  在参数估计中有一类方法叫做“最大估计”,因为涉及到的估计函数往往是是指数型族,取对数后不影响它的单调性但会让计算过程变得简单,所以就采用了函数对数,称“对数函数”。   根据涉及的模型不同,对数函数会不尽相同,但是原理是一样的,都是从因变量的密度函数的到来,并涉及到对随机干扰项分布的假设。最大估计法的基本思想  极大
前言本文中对论文的构建网络部分通读,训练部分暂时忽略,代码构建同样只做网络构建,不进行训练测试和预测(或许会另写一篇)。理论论述卷积网络配置有A-E6种,权重层不断增加。 表二是不同配置的参数的数量。网络结构论文中的网络结构解析2.1 ARCHITECTURE输入224*224的RGB图片。 唯一的预处理是输入的图片的每个像素点减去训练集的平均RGB值。 使用3*3的过滤器。 在其中一个配置,甚至
期望对数和对应的估计量 我们可以通过计算KL信息来评估给定模型的合适性。 但是,KL信息在真实建模中只能在有限的几个例子中使用,因为KL信息包含了未知分布,这使得KL信息不能被直接计算。KL信息可以被分解为 此外,等式右边的第一项是一个常数,因为它仅仅依赖于真实模型,显然为了比较不同的模型,仅考虑上式的第二项即可。 这一项被称为期望对数(expected log-likelihood).
温馨提示:代码运行过程中,有任何问题可留言,定答复!#有一种方法可以看出逻辑斯蒂回归和线性回归之间的联系, #逻辑斯蒂回归就是以对数发生比 为响应变量进行线性拟合,即log(P(Y)/1  P(Y)) =B0+B1x。 #这里的系数是通过极大估计得到 的,而不是通过OLS。 #极大的直观意义就是,我们要找到一对B0和B1的估计值,使它们产生 的对观测的预测概率尽可能接近Y的实际观测结果,
函数函数是给定联合样本值x下关于未知参数θ的函数: 等式右边表明在给定θ时,x出现的可能性大小。 类似于当x∈X时 如果X时离散的随机变量 ,即代表了在参数θ下随机向量X取到x的可能性,也可以称为概率质量函数。 当X为连续随机变量时,那么f(x|θ)为给定θ下x的概率密度函数。等式左边表明在给定样本x时,对于不同的θ,那个θ可以使x出现的可能性最大。 (这里的参数θ可以参照后面极大
”是对likelihood 的一种较为贴近文言文的翻译.“”用现代的中文来说即“可能性”。 函数设总体X服从分布P(x;θ)(当X是连
原创 11月前
148阅读
函数:在已经抽到这一组样本X的条件下,估计参数θ的值,θ代表指定的分布参数。最大估计可看作是一个反推,通常根据已知条件推算结果,而最大估计是已知结果,然后寻求使该结果出现的可能性最大的条件,以此作为估计值。极大估计,概率论在统计学的应用,参数估计的方法之一。已知某个随机样本满足某种概率分布(即已知样本符合某种分布),但具体参数不清楚,参数估计就是通过若干次试验,观察其结果,利用结果
One of the most fundamental concepts of modern statistics is that of likelihood. In each of the discrete random variables we have considered thus far,
转载 2016-03-01 18:53:00
155阅读
2评论
”这种事件,我们可以问硬币落地时十次都是正面向上的“概率”是多少;而对
转载 2023-08-11 15:47:21
351阅读
从极大估计的角度理解深度学习中loss函数为了理解这一概念,首先回顾下最大估计的概念: 最大估计常用于利用已知的样本结果,反推最有可能导致这一结果产生的参数值,往往模型结果已经确定,用于反推模型中的参数.即在参数空间中选择最有可能导致样本结果发生的参数.因为结果已知,则某一参数使得结果产生的概率最大,则该参数为最优参数. 函数: 为了便于分析和计算,常使用对数函数:1. log
020.ht
逻辑回归(对数几率回归)逻辑回归是一种分类算法,不是回归算法,因为它用了和回归类似的思想来解决了分类问题。一句话总结逻辑回归:“逻辑回归假设数据服从伯努利分布,通过极大函数的方法,运用梯度下降来求解参数,来达到将数据二分类的目的”。1.广义线性模型我们先来看看线性回归模型:但是假设我们认为实例所对应的输出标记是在指数尺度上变化,那么就可以将输出标记的对数作为线性模型逼近的目标:这就是“对数线性
https://math.stackexchange.com/questions/892832/why-we-consider-log-lik
原创 2022-09-19 10:15:27
132阅读
文章目录第三章:学习参数通过推断学习极大法经验分布和模型分布是怎么关联的?最大法R语言实现 第三章:学习参数本章的所有例子基于条件独立假设(iid) 构建概率图模型大致需要3个步骤:定义随机变量,即图中节点定义图的结构定义每个局部分布的数值参数设D为数据集,θ为图模型的参数,函数为,即给定参数下观测数据集的概率,那么最大估计就是要找出参数θ。可以写作   如果想要更准确地刻画θ,
以前上学的时候对函数什么的一看到就头疼,最近专门研究了一下,写一下自己的总计,后序会是与函数先骨干的GMM和HMM的总结。经典理解:  设总体的概率模型为F(x|θ)。为了说明的方便,暂假定只有一个未知参数,X1,X2,……,Xn是容量为 n 的随机样本(大写X),实际观测到的样本观测值(小写x)为 Xl=x1,X2=x2,……,Xn=xn 。把同各Xi对应的密度函数或概率函数
R 中进行对数变换说明:这篇文章是我在学习 R 时看到的,感觉很有用,就翻译了过来~~ —– 正文分割线 —–当数据分布大致对称时,用均值和标准差对数据进行归一化是非常有意义的。在本文中,基于第4章 实用数据科学与R,作者展示了一种可以使某些分布更加对称的转换。是否对数据进行转换可能取决于你要使用的建模方法。例如,对于线性回归和逻辑回归,理想情况下你希望输入变量和输出变量之间的关系近似为线性,也
面向统计模型参数统计学中,函数是一种关于统计模型参数的函数。给定输出x时,关于参数θ的函数L(θ|x)(在数值上)等于给定参数θ后变量X的概率:L(θ|x)=P(X=x|θ)。函数在推断统计学(Statistical inference)中扮演重要角色,尤其是在参数估计方法中。在教科书中,常常被用作“概率”的同义词。但是在统计学中,二者有截然不同的用法。概率描述了已知参数时的随机变
在数理统计学中,函数是一种关于统计模型中的参数的函数,表示模型参数中的性。函数在统计推断中有重大作用,如在最大估计和费雪信息之中的应用等等。“性”与“或然性”或“概率”意思相近,都是指某种事件发生的可能性,但是在统计学中,“性”和“或然性”或“概率”又有明确的区分。概率用于在已知一些参数的情况下,预测接下来的观测所得到的结果,而性则是用于在已知某些观测所得到的结果时,对
1. 二项分布 二项分布也叫 0-1 分布,如随机变量 x 服从二项分布,关于参数 μ(0≤μ≤1),其值取 1 和取 0 的概率如下: {p(x=1|μ)=μp(x=0|μ)=1−μ 则在 x 上的概率分布为: Bern(x|μ)=μx(1−μ)1−x 2. 服从二项分布的样本集的对数函数 给定样本集 D={x1,x2,…,xB} 是对随机变量 x 的观测值,假定样本
转载 2017-07-19 18:11:00
453阅读
2评论
  • 1
  • 2
  • 3
  • 4
  • 5