俗话说“庙小妖风大,水浅王八多”,作为一名自然语言处理的水货研究生,通常只是对论文有着一知半解的了解,然而因为毕竟人老了年纪大容易忘事,有时候还是想把这一知半解的想法用文字写出来,以便之后回顾,看官勿喷,水货要开始动笔了。 文本建模是自然语言处理领域中很基础的内容,而且也已经被研究了千万遍,这个系列我主要的思路是从LSA->pLSA->unigram model ->L
上一节详细介绍了什么是LDA,详细讲解了他的原理,大家应该好好理解,如果不理解,这一节就别看了,你是看不懂的,这里我在简单的叙述LDA的算法思想:首先我们只拥有很多篇文本和一个词典,那么我们就可以在此基础上建立基于基于文本和词向量联合概率(也可以理解为基于文本和词向量的矩阵,大家暂且这样理解),我们只知道这么多了,虽然知道了联合概率密度了,但是还是无法计算,因为我们的隐分类或者主题不知道啊,在LS
朴素贝叶斯朴素贝叶斯算法是基于 贝叶斯原理 与 特征条件 独立假设的分类算法,对于给定的训练数据集,首先基于 特征条件 独立假设学习输入/输出的 联合概率分布 ,然后基于此模型,对给定的输入x,利用 贝叶斯定理 求出 后验概率最大 的输出y,朴素贝叶斯法实现简单,学习与预测的效率都很高,是一种常见的方法。 朴素贝叶斯(naive Bayes)算法是有监督的学习算法,解决的是分类问题,如客户是否流失
序工作中暂时不会用到LDA模型。不过空闲下来,学习学习,自娱自乐。LDA是generative model,这决定了这个模型的“世界观”。从LDA模型看来,文本是通过一种方式“产生”出来的。模型的理论,就是猜测文本产生的方式;模型的训练,就是给定产生方式后,通过样本,估计相关参数;模型的应用过程,就是确定了产生方式,并给定了模型参数,实际运行产生新的文本。Unigram模型最简单的一种模型。就是假
按照wiki上的介绍,LDA由Blei, David M.、Ng, Andrew Y.、Jordan于2003年提出,是一种主题模型,它可以将文档集 中每篇文档的主题以概率分布的形式给出,从而通过分析一些文档抽取出它们的主题(分布)出来后,便可以根据主题(分布)进行主题聚类或文本分类。同时,它是一种典型的词袋模型,即一篇文档是由一组词构成,词与词之间没有先后顺序的关系。此外,一篇文档可以包含多个主
http://leyew.blog.51cto.com/5043877/860255#559183-tsina-1-46862-ed0973a0c870156ed15f06a6573c8bf0前几天开始学习lda,走了不少弯路,对lda仍然是一头雾水。看了这篇文档以后总算明白lda是干啥的了 LDA(Latent Dirichlet Allocation)学习笔记最近在看LDA算法,经过
话题模型topic model是自然语言处理领域里面热门的一个技术,可以用来做很多的事情,例如相似度比较,关键词提取,分类,还有就是具体产品业务上的事了,总之可以干很多的事情。今天不会讲LDA模型的很多细节和原理,没有满屏的数学公式,只讲一讲LDA模型是个什么东西,简单的原理,用什么技术实现的LDA,以及LDA能做什么开发和LDA在实现中的一些问题。什么是主题对于一篇新闻报道,看到里面讲了昨天NB
“LDA(Latent Dirichlet Allocation)模型,模型主要解决文档处理领域的问题,比如文章主题分类、文章检测、相似度分析、文本分段和文档检索等问题。LDA主题模型是一个三层贝叶斯概率模型,包含词、主题、文档三层结构,文档到主题服从Dirichlet分布,主题到词服从多项式分布。它采用了词袋(Bag of Words)的方法,将每一篇文章视为一个词频向量,每一篇文档代表了一些主
转载
2023-07-31 21:53:21
139阅读
2008-11-16 20:21
发信人: pennyliang (pennyliang), Latent Dirichlet Allocation(LDA)模型是近年来提出的一种具有文本主题表示能力的非监督学习模型。 rocchio算法,读作“Rockey-O”。 LDA,就是将原来向量空间的词
转载
2023-10-31 14:52:31
37阅读
之前几篇文章讲到了文档主题模型,但是毕竟我的首要任务还是做分类任务,而涉及主题模型的原因主要是用于text representation,因为考虑到Topic Model能够明显将文档向量降低维度,当然TopicModel可以做比这更多的事情,但是对于分类任务,我觉得这一点就差不多了。 LDA之前已经说到过,是一个比较完善的文档主题模型,这次试用的是JGibbsLDA开源的LDA代码做L
LDA是一种文档主题生成模型,包含词、主题和文档三层结构。所谓生成模型,就是说,我们认为一篇文章的每个词都是通过“以一定概率选择了某个主题,并从这个主题中以一定概率选择某个词语”这样一个过程得到。文档到主题服从多项式分布,主题到词服从多项式分布。LDA是一种典型的词袋模型,即它认为一篇文档是由一组词构成的一个集合,词与词之间没有顺序以及先后的关系。一篇文档可以包含多个主题,文档中每一个词都由其中的
隐含狄利克雷分布简称LDA(Latent Dirichlet allocation),首先由Blei, David M.、吴恩达和Jordan, Michael I于2003年提出,目前在文本挖掘领域包括文本主题识别、文本分类以及文本相似度计算方面都有应用。LDA就是在pLSA的基础上加层贝叶斯框架,即LDA就是pLSA的贝叶斯版本。 pLSA与LDA对比(文档生成方式) &n
之前看LDA,一直没搞懂到底作用是什么,公式推导了一大堆,dirichlet分布求了一堆倒数,却没有真正理解精髓在哪里。最近手上遇到了一个文本分类的问题,采用普通的VSM模型的时候,运行的太慢,后来查找改进策略的时候,想起了LDA,因此把LDA重新拉回我的视线,也终于弄懂了到底是做什么的。LDA本质是一种降维为什么这么说,因为在我的文本分类问题中,文本共有290w个,根据词项得到的维度为90w个,
众所周知,个性化推荐系统能够根据用户的兴趣、偏好等信息向用户推荐相关内容,使得用户更感兴趣,从而提升用户体验,提高用户粘度,之前我们曾经使用协同过滤算法构建过个性化推荐系统,但基于显式反馈的算法就会有一定的局限性,本次我们使用无监督的Lda文本聚类方式来构建文本的个性化推荐系统。推荐算法:协同过滤/Lda聚类我们知道,协同过滤算法是一种基于用户的历史行为来推荐物品的算法。协同过滤算法利用用户之间的
LDAclass pyspark.ml.clustering.LDA(featuresCol=‘features’, maxIter=20, seed=None, checkpointInterval=10, k=10, optimizer=‘online’, learningOffset=1024.0, learningDecay=0.51, subsamplingRate=0.05, opti
个性化推荐引擎:采用一种高效的算法来估计贝叶斯模型中的参数 问题定义: LDA是一个三层次的贝叶斯模型,没一个item可以通过一组topic来表示,而每个topic又符合一定的概率分布。本文的LDA算法应用比较广泛,可应用于文本建模,文本分类和电影推荐,并且本文采用了一种高效的算法来估计贝叶斯模型中的参数。 方法: (1)LDA算法 首先是几个常见的术语:v=1,否则wv=0; 12.
转载
2023-08-24 20:08:18
100阅读
主要是从算法层面来介绍LDA的由来或者说发展 文本挖掘的研究对象是文本,比如对文本进行分类或者情感分析等。由于文本是一种非结构化的数据,这样就不利于计算机的处理,所以研究者们开始对文本进行数字化处理。(1)没有缩短文档表示的长度;(2)也没有充分利用文档内部或者文档之间的统计结构。利用tf-idf方法进行文档相似性判断的思想基础是:认为文档之间重复的词语越多越相似。虽然这个假设对于一部分文档是适
目录文本表示模型主题模型LSApLSALDA 文本表示模型文本表示模型可分为以下几种:基于one-hot, tf-idf, textrank等的bag-of-words;基于计数的,主题模型,如LSA, pLSA, LDA基于预测的,静态词嵌入,如Word2Vec, FastText, Glove基于大规模预训练的,动态词嵌入,如BERT, ELMo, GPT, T5本文讲解第二种“主题模型”。
#-*- coding:utf-8 -*-
import logging
import logging.config
import ConfigParser
import numpy as np
import random
import codecs
import os
from collections import OrderedDict
#获取当前路径
path = os.getcwd()
#
原文分析法(Textual Analysis),是在用例说明与流程分析的基础上进行的业务领域分析,是一项在需求研讨会后整理和分析需求的工作。当我们完成了用例图的绘制,为每个用例编写出用例说明以后,原文分析的工作就可以开始了。要讲解原文分析,我们还是用一个实例更简单明了:
这是一个实际项目的用例说明。在进行原文分析的时候,我们首先要做的事情就是对用例说明中