在我日常的技术探索中,如何利用 Python 实现 LDA(潜在狄利克雷分配)模型来计算文本相似度的问题引起了我的兴趣。LDA 是一种无监督的概率模型,经常应用于主题建模与文档聚类中。通过计算文本之间的相似度,我们能够发现潜在的主题关系,对文本进行高效的分类和分析。 ## 背景描述 在实际应用中,当我们处理大量文本文档时,如何快速而准确地判断文档之间的相似度成为一项重要而又复杂的任务。LDA
目录文本表示模型主题模型LSApLSALDA 文本表示模型文本表示模型可分为以下几种:基于one-hot, tf-idf, textrank等的bag-of-words;基于计数的,主题模型,如LSA, pLSA, LDA基于预测的,静态词嵌入,如Word2Vec, FastText, Glove基于大规模预训练的,动态词嵌入,如BERT, ELMo, GPT, T5本文讲解第二种“主题模型”。
向量空间模型VSM:VSM的介绍:一个文档可以由文档中的一系列关键词组成,而VSM则是用这些关键词的向量组成一篇文档,其中的每个分量代表词项在文档中的相对重要性。VSM的例子:比如说,一个文档有分词和去停用词之后,有N个关键词(或许去重后就有M个关键词),文档关键词相应的表示为(d1,d2,d3,...,dn),而每个关键词都有一个对应的权重(w1,w1,...,wn)。对于一篇文档来说,或许所含
# LDA 相似度分析介绍 Latent Dirichlet Allocation(LDA)是一种生成模型,广泛用于主题建模。在文本数据中,LDA 可以帮助我们挖掘潜在主题,进而计算文档之间的相似度。本文将介绍如何使用 Python 实现 LDA 相似度分析,提供代码示例,并附上甘特图和序列图以便更好地理解整个过程。 ## LDA 模型概述 LDA 通过假设文档是由多个主题构成的,每个主题是
原创 7月前
22阅读
关于使用tf-idf进行文本相似度的计算,个人觉得这两篇文章讲解的很好:,,大家可以去看一看。我在这里说一些自己在学习文本相似度的计算的过程中的一些感悟,以及一些自己的理解。如有不当之处,请予指正。首先应该明确,文本相似度计算就是将两个个体的特征向量化,然后通过余弦公式计算两者之间的相似性即可。(当然除了使用余弦相似度的方法,也可以用欧拉距离或者jaccard系数的方法来计算文本相似度,具体方法此
# Python LDA 实现中文文本相似度 ## 1. 概述 在本文中,我将教会你如何使用 Python 中的 LDA(Latent Dirichlet Allocation)模型来实现中文文本相似度计算。LDA 是一种无监督学习算法,常用于主题建模和文本分类等任务。 ## 2. 实现步骤 下面是实现中文文本相似度的步骤,我们将逐一进行介绍。 ### 步骤1:数据预处理 在这一步中,我
原创 2023-08-01 05:30:53
419阅读
MySimHash:import com.hankcs.hanlp.seg.common.Term; import com.hankcs.hanlp.tokenizer.StandardTokenizer; import org.apache.commons.lang3.StringUtils; import org.jsoup.Jsoup; import org.jsoup.safety.Whi
第三次实验报告程序语言:python 姓名: unicorn 学号: 12345678910 日期:2023/4/8一、 问题重述  给定两个程序,如何判断他们的相似性?二、 问题分析  先假设程序为C语言,不然题目太简洁了无从下手。C语言是比较基础的语言,我对C语言也比较了解,方便操作。然后还要假设比较的两个代码都是正确的,如果出现语法错误就没有规律可循了。   接着就是对源代码的预处理,要让文
gensim是一个python的主题模型工具包,可以用来计算文本相似度。 原理     1、文本相似度计算的需求始于搜索引擎。     搜索引擎需要计算“用户查询”和爬下来的众多”网页“之间的相似度,从而把最相似的排在最前返回给用户。     2、主要使用的算法是tf-idf    &nb
话题模型topic model是自然语言处理领域里面热门的一个技术,可以用来做很多的事情,例如相似度比较,关键词提取,分类,还有就是具体产品业务上的事了,总之可以干很多的事情。今天不会讲LDA模型的很多细节和原理,没有满屏的数学公式,只讲一讲LDA模型是个什么东西,简单的原理,用什么技术实现的LDA,以及LDA能做什么开发和LDA在实现中的一些问题。什么是主题对于一篇新闻报道,看到里面讲了昨天NB
使用LDA主题分析方法,分析短文本,计算文本相似度。 系列之一,综述帖。 目标:针对给定输入文本文本库,计算得出文本库中与输入文本相似文本 对于人类,两句话的相似性一般都从语义上进行考虑,大白话说就是”这两句话说的是同一件事儿/同一个意思“。相似的句子可能会有相似的语法。对于当前的计算机来说,已经用标点符号等区分开了句子与句子,但如何理解
转载 2024-04-21 15:32:06
253阅读
LDA(Latent Dirichlet Allocation)模型,模型主要解决文档处理领域的问题,比如文章主题分类、文章检测、相似度分析、文本分段和文档检索等问题。LDA主题模型是一个三层贝叶斯概率模型,包含词、主题、文档三层结构,文档到主题服从Dirichlet分布,主题到词服从多项式分布。它采用了词袋(Bag of Words)的方法,将每一篇文章视为一个词频向量,每一篇文档代表了一些主
上一节详细介绍了什么是LDA,详细讲解了他的原理,大家应该好好理解,如果不理解,这一节就别看了,你是看不懂的,这里我在简单的叙述LDA的算法思想:首先我们只拥有很多篇文本和一个词典,那么我们就可以在此基础上建立基于基于文本和词向量联合概率(也可以理解为基于文本和词向量的矩阵,大家暂且这样理解),我们只知道这么多了,虽然知道了联合概率密度了,但是还是无法计算,因为我们的隐分类或者主题不知道啊,在LS
知道原理的同学这部分可以略过直接看实践部分什么是TD-IDF?构造文档模型我们这里使用空间向量模型来数据化文档内容:向量空间模型中将文档表达为一个矢量。用特征向量(T1,W1;T2,W2;T3, W3;…;Tn,Wn)表示文档。Ti是词条项,Wi是Ti在文档中的重要程度, 即将文档看作是由一组相互独立的词条组构成,把T1,T2 …,Tn看成一个n 维坐标系中的坐标轴,对于每一词条,根据其重要程度赋
俗话说“庙小妖风大,水浅王八多”,作为一名自然语言处理的水货研究生,通常只是对论文有着一知半解的了解,然而因为毕竟人老了年纪大容易忘事,有时候还是想把这一知半解的想法用文字写出来,以便之后回顾,看官勿喷,水货要开始动笔了。 文本建模是自然语言处理领域中很基础的内容,而且也已经被研究了千万遍,这个系列我主要的思路是从LSA->pLSA->unigram model ->L
文章目录相似度计算方法1. 文本距离1.1 编辑距离(Edit Distance)1.2 最长公共子串、最长公共子序列(Long Common Subsequence,LCS)1.3 句向量表示(Word Averaging Model,WAM)1.4 WMD1.5 BM252. 统计指标2.1 Cosine Similarity2.2 Jaccard Similarity2.3 Pearson
转载 2024-04-26 14:57:21
135阅读
个性化推荐引擎:采用一种高效的算法来估计贝叶斯模型中的参数 问题定义: LDA是一个三层次的贝叶斯模型,没一个item可以通过一组topic来表示,而每个topic又符合一定的概率分布。本文的LDA算法应用比较广泛,可应用于文本建模,文本分类和电影推荐,并且本文采用了一种高效的算法来估计贝叶斯模型中的参数。 方法: (1)LDA算法 首先是几个常见的术语:v=1,否则wv=0; 12.
众所周知,个性化推荐系统能够根据用户的兴趣、偏好等信息向用户推荐相关内容,使得用户更感兴趣,从而提升用户体验,提高用户粘度,之前我们曾经使用协同过滤算法构建过个性化推荐系统,但基于显式反馈的算法就会有一定的局限性,本次我们使用无监督的Lda文本聚类方式来构建文本的个性化推荐系统。推荐算法:协同过滤/Lda聚类我们知道,协同过滤算法是一种基于用户的历史行为来推荐物品的算法。协同过滤算法利用用户之间的
转载 2024-05-24 11:29:17
50阅读
序工作中暂时不会用到LDA模型。不过空闲下来,学习学习,自娱自乐。LDA是generative model,这决定了这个模型的“世界观”。从LDA模型看来,文本是通过一种方式“产生”出来的。模型的理论,就是猜测文本产生的方式;模型的训练,就是给定产生方式后,通过样本,估计相关参数;模型的应用过程,就是确定了产生方式,并给定了模型参数,实际运行产生新的文本。Unigram模型最简单的一种模型。就是假
按照wiki上的介绍,LDA由Blei, David M.、Ng, Andrew Y.、Jordan于2003年提出,是一种主题模型,它可以将文档集 中每篇文档的主题以概率分布的形式给出,从而通过分析一些文档抽取出它们的主题(分布)出来后,便可以根据主题(分布)进行主题聚类或文本分类。同时,它是一种典型的词袋模型,即一篇文档是由一组词构成,词与词之间没有先后顺序的关系。此外,一篇文档可以包含多个主
  • 1
  • 2
  • 3
  • 4
  • 5