1、重新考虑上一篇的例子 在前面我们讨论了朴素分类。朴素分类有一个限制条件,就是特征属性必须有条件独立或基本独立(实际上在现实应用中几乎不可能做到完全独立)。当这个条件成立时,朴素分类法的准确率是最高的,但不幸的是,现实中各个特征属性间往往并不条件独立,而是具有较强的相关性,这样就限制了朴素分类的能力。这一篇文章中,我们接着上一篇文章的例子,讨论分类中更高级
朴素原理及实现理论概率相关知识介绍代码实现 本文参考自鲁东大学人工智能学院课程内容百度百科解释:朴素法(Naive Bayes model)是基于贝叶斯定理与特征条件独立假设的分类方法。 最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素模型(Naive Bayesian Model,NBM)。和决策树模型相比,朴素贝叶斯分类器(Naive Bay
  一、贝叶斯定理数学基础  我们都知道条件概率的数学公式形式为  即B发生的条件下A发生的概率等于A和B同时发生的概率除以B发生的概率。  根据此公式变换,得到公式:  即定律是关于随机事件A和B的条件概率(或边缘概率)的一则定律。通常,事件A在事件B发生的条件溪的概率,与事件B在事件A的条件下的概率是不一样的,而定律就是描述二者之间的关系的。  更进一步将公式
1.3、分类的基础——贝叶斯定理      每次提到贝叶斯定理,我心中的崇敬之情都油然而生,倒不是因为这个定理多高深,而是因为它特别有用。这个定理解决了现实生活里经常遇到的问题:已知某条件概率,如何得到两个事件交换后的概率,也就是在已知P(A|B)的情况下如何求得P(B|A)。这里先解释什么是条件概率:   &n
注:本算法的实现仅仅适用于小规模数据集的实验与测试,不适合用于工程应用算法假定训练数据各属性列的值均是离散类型的。若是非离散类型的数据,需要首先进行数据的预处理,将非离散型的数据离散化。算法中使用到了DecimalCaculate类,该类是java中BigDecimal类的扩展,用于高精度浮点数的运算。该类的实现同本人转载的一篇博文:对BigDecimal常用方法的归类中的Arith类相同。算法实
用Java实现Bayes分类算法。与决策树分类法相比,Bayes分类法可以轻松处理有多个分类的情况。它处理2个类和多个类本质上没什么区别。但是它相对于决策树也有一定的缺陷,即该算法是建立在各个属性统计独立的基础上的,如果属性间有关联,就会削弱算法的性能。与之前的决策树分类算法一样,要事先定义好double[][]型的训练集和检测集,格式为 double[i][0]=标号 double[i][
实验描述:对指定数据集进行分类问题的分析,选择适当的分类算法,编写程序实现,提交程序和结果报告数据集: balance-scale.data(见附件一) ,已有数据集构建贝叶斯分类器。数据包括四个属性:五个属性值 第一个属性值表示样本的类别号,其他四个属性为四个不同的特征值。实验环境和编程语言:本实验使用的编程语言为:Java编程环境为:Intellij idea构建分类器的算法为:朴素算法
转载 2023-10-22 08:42:46
61阅读
1、朴素法是基于贝叶斯定理与特征条件独立假设的分类方法,对于给定的训练数据集,首先基于特征条件独立假设学习输入/输出的联合概率分布;然后基于此模型,对给定的输入x,利用贝叶斯定理求出后验概率最大的输出y。该方法的实现比较简单,学习和预测的概率都很高,是一种常用的方法。2、基本方法:设输入空间χ⊆Rn为n维向量的集合,输出空间为类标记集合γ={c_1,c_2,…,c_k}。输入为特征向量x∈
算法java实现第一步对训练集进行预处理,分词并计算词频,得到存储训练集的特征集合/** * 所有训练集分词特征集合 * 第一个String代表分类标签,也就是存储该类别训练集的文件名 * 第二个String代表某条训练集的路径,这里存储的是该条语料的绝对路径 * Map<String, Integer>存储的是该条训练集的特征词和
注:本算法的实现仅仅适用于小规模数据集的实验与测试,不适合用于工程应用算法假定训练数据各属性列的值均是离散类型的。若是非离散类型的数据,需要首先进行数据的预处理,将非离散型的数据离散化。算法中使用到了DecimalCaculate类,该类是java中BigDecimal类的扩展,用于高精度浮点数的运算。该类的实现同本人转载的一篇博文:对BigDecimal常用方法的归类中的Arith类相同。算法实
数据简介本训练数据共有625个训练样例,每个样例有4个属性x1,x2,x3,x4,每个属性值可以取值{1,2,3,4,5}。数据集中的每个样例都有标签"L","B"或"R"。 我们在这里序号末尾为1的样本当作测试集,共有63个,其他的作为训练集,共有562个。 下面我们使用朴素算法来进行训练。 第一步,实现类的标签"L","B","R"转换成数字1,2,3mat
优化方法 目录优化方法历史优点与其他方法的不同之处步骤理论推导过程高斯过程选择下一次采样点计算步骤结构图Python示例代码数组说明计算过程 历史优化方法(Bayesian optimization method)起源于1960年代,主要用于实验设计和高效参数调整。在优化方法出现之前,常用的优化方法包括网格搜索、随机搜索、演化算法等。这些方法普遍需要进行大量的实验才能得到最
网络网络(Bayesian Networks)也被称为信念网络(Belif Networks)或者因果网络(Causal Networks),是描述数据变量之间依赖关系的一种图形模式,是一种用来进行推理的模型。网络为人们提供了一种方便的框架结构来表示因果关系,这使得不确定性推理变得在逻辑上更为清晰、可理解性强。对于网络,我们可以用两种方法来看待它:首先网表达了各个节点
#coding:utf-8 from numpy import * #加载文档词向量数据以及相应文档类别,0表示正常言论,1表示侮辱性文字 def loadDataSet(): postingList = [['my','dog','has','flea','problems','help','please'], ['maybe','not','tak
转载 2023-08-28 14:04:17
94阅读
零、前言:模型估计问题的总结模型分为确知模型与概率模型。确知模型的输出是一个确定的值,如:买x斤苹果,每斤苹果2元,总价值为y=2x;而概率模型输出的是自变量的概率,如:一个不均匀的四面体骰子,出现对应点数的概率和点数的大小相关,P(x)=y=0.1x。我们这里主要讨论概率模型在这里首先规定符号:假设是iid的一组抽样,并记作模型是对数据的描述,用一些参数和变量及它们的数学关系刻画,记作,其中X代
朴素(naïve Bayes)法是基于贝叶斯定理与特征条件独立假设的分类方法[1]。对于给定的训练数据集,首先基于特征条件独立假设学习输入/输出的联合概率分布;然后基于此模型,对给定的输入x,利用贝叶斯定理求出后验概率最大的输出y。朴素实现简单,学习与预测的效率都很高,是一种常用的方法。4.2 朴素法的参数估计4.2.1 极大似然估计在朴素法中,学习意味着估计P(Y=ck
(一)原理 设每个数据样本用一个n维特征向量来描述n个属性的值,即:X={x1,x2,…,xn},假定有m个类,分别用C1, C2,…,Cm表示。给定一个未知的数据样本X(即没有类标号),若朴素分类法将未知的样本X分配给类Ci,则一定是P(Ci|X)>P(Cj|X) 1≤j≤m,j≠i 根据贝叶斯定理有P(Ci|X)=P(X|Ci)P(Ci)/ P(X) 由于P(X)对于所有类为常数,
目录1. 言论过滤器1.1 项目描述1.2 朴素 工作原理:1.2.1 词条向量1.3 开发流程:1.4 代码实现1.4.1 创建样本1.4.2 构建词汇表,用于建立词集向量1.4.3 构建词集向量1.4.4 构建训练函数:求解相关条件概率,先验概率1.4.5 分类测试函数:返回概率大的分类结果1.4.6 main()函数1.4.7 运行结果1.4.8 存在问题1.5 平滑处理:三模型之一
朴素是经典的机器学习算法之一,也是为数不多的基于概率论的分类算法。朴素原理简单,也很容易实现,多用于文本分类,比如垃圾邮件过滤。1.算法思想——基于概率的预测      逻辑回归通过拟合曲线(或者学习超平面)实现分类,决策树通过寻找最佳划分特征进而学习样本路径实现分类,支持向量机通过寻找分类超平面进而最大化类别间隔实现分类。相比之下,朴素独辟蹊径,通
1. 网络 网络(Bayesian network),又称信念网络(Belief Network),或有向无环图模型。它用网络结构代表领域的基本因果知识。  网络中的节点表示命题(或随机变量),认为有依赖关系(或非条件独立)的命题用箭头来连接。  令G = (I,E)表示一个有向无环图(DAG),其中I代表图形中所有的节点的集合,而E代表有向连接线段的集合,且令X = (Xi),
  • 1
  • 2
  • 3
  • 4
  • 5