学习内容 1、逻辑回归与线性回归的联系与区别 联系: 线性回归决策函数 将其通过sigmoid函数,获得逻辑回归的决策函数 区别: 线性回归用来预测,逻辑回归用来分类。 线性回归是拟合函数,逻辑回归是预测函数 线性回归的参数计算方法是最小二乘法,逻辑回归的参数计算方法是梯度下降 2、 逻辑回归的原理 面对一个回归或者分类问题,建立代价函数,然后通过优化方法迭代求解出最优的模型参数,然后测试验证我们
文章目录一、什么是逻辑回归?二、逻辑回归激活函数1、二分类sigmoid函数2、多分类softmax函数三、损失函数四、逻辑回归相关数学概念1、概率密度函数2、似然函数3、极大似然估计4、伯努利分布5、熵6、交叉熵 一、什么是逻辑回归? 逻辑回归属于有监督机器学习算法的一种,虽然名字中带有回归,但是属于分类算法(输出变量为连续变量的预测问题是回归问题,输出变量为有限个离散变量的预测问题成为
转载
2024-01-30 08:31:12
56阅读
1、总述逻辑回归是应用非常广泛的一个==分类机器学习算法==,它将数据拟合到一个logit函数(或者叫做logistic函数)中,从而能够完成对事件发生的概率进行预测。2、由来要说逻辑回归,我们得追溯到线性回归,想必大家对线性回归都有一定的了解,即对于多维空间中存在的样本点,我们用特征的线性组合去拟合空间中点的分布和轨迹。如下图所示: 线性回归能对连续值结果进行预测,而现实生活中常见的另外一类问题
转载
2024-04-15 18:13:30
24阅读
线性逻辑回归的代码实现载入数据data = np.genfromtxt(r'data.csv', delimiter=',')
x_data = data[:, :-1] # 特征
y_data = data[:, -1] # 标签可以看到,这个数据集有3列,前两列为特征,最后一列‘1’和‘0’为标签 作图观察数据集def plot():
x0 = []
x1 = []
转载
2024-02-19 11:37:59
132阅读
点击上方“小白学视觉”,选择加"星标"或“置顶”重磅干货,第一时间送达尽管对于机器学习来说,理论是非常重要的内容,但是持续的理论学习多少会有些审美疲劳。今天,我们就试着用代码来简单实现一下逻辑回归,也方便大家更好地理解逻辑回归的原理,以及机器学习模型在实践中是怎么运作的。一、逻辑回归算法步骤简述构建一个逻辑回归模型有以下几步:收集数据:采用任意方法收集数据准备数据:由于需要进行距离计算,因此我们要
转载
2023-07-22 20:48:31
170阅读
问题: 大家想必对MNIST数据集已经非常熟悉了吧?这个数据集被反复“咀嚼”,反复研究。今天我们将换个角度研究MNIST数据集。假设现在不使用卷积神经网络,又该使用什么方法来解决MNIST分类问题呢?一、观察数据 在开始分析数据问题之前,我们需要了解最基本的数据对象。最好的方法就是访问官网去看一看数据的构成。官网地址如下:MNIST。MNIST数据集包含四个部分:Training
转载
2024-06-28 14:15:37
56阅读
1.1 逻辑回归原理详解1.1.1 LR原理讲解+公式推导从公式推导中详细讲解逻辑回归算法的原理。 线性回归模型: 逻辑回归是用来估计一个实例属于某个特定类别的概率,是一个二分类算法,如果预估概率大于等于50%,则模型预测该实例为正类,反之,则预测为负类。则需要把y从负无穷大到正无穷大映射为概率p从0到1,可以设置为:则:&nb
转载
2023-07-22 17:50:20
167阅读
一. 原理简单介绍logistic回归是一种基于线性回归模型的分类算法,常用于数据挖掘,疾病自动诊断,经济预测等领域。例如,探讨引发疾病的危险因素,并根据危险因素预测疾病发生的概率等。以胃癌病情分析为例,选择两组人群,一组是胃癌组,一组是非胃癌组,两组人群必定具有不同的体征与生活方式等。因此因变量就为是否胃癌,值为“是”或“否”,自变量就可以包括很多了,如年龄、性别、饮食习惯、幽门螺杆菌感染等。自
转载
2024-03-17 10:43:28
70阅读
目录引言逻辑回归Matlab代码效果展示 Python代码效果展示 C++代码效果展示引言 本专栏第三个机器学习算法:逻辑回归算法,全部代码通过Github下载,使用Matlab,Python以及C++三种语言进行实现。其中Matlab的代码可以直接运行,Python与C++的代码需要
转载
2023-10-05 14:17:16
148阅读
作者:奶糖猫一、算法概述逻辑回归(Logistic)虽带有回归二字,但它却是一个经典的二分类算法,它适合处理一些二分类任务,例如疾病检测、垃圾邮件检测、用户点击率以及上文所涉及的正负情感分析等等。首先了解一下何为回归?假设现在有一些数据点,我们利用一条直线对这些点进行拟合(该线称为最佳拟合直线)
转载
2024-04-18 09:30:02
39阅读
下面主要提供逻辑回归的代码。 数据下载:数据下载 这是老师布置的作业,现把完整代码附上。 代码如下(python 3.6):# -*- encoding: utf-8 -*-
from __future__ import print_function
import numpy as np
import scipy.optimize as op
import matplotlib.pypl
转载
2024-06-23 06:36:18
175阅读
目录代码加注释运行截图逻辑回归代码加注释import numpy as np
import tensorflow.compat.v1 as tf
import matplotlib.pyplot as plt
from tensorflow.examples.tutorials.mnist import input_data
tf.compat.v1.disable_eager_execution
逻辑回归算法:虽然名字中带有回归两个字,但它却不是回归算法,它是一个经典的二分类算法。回归与分类的区别: 回归:可以得到一个准确值或一个区间值,比如房屋价格预测,NBA比赛得分等。 分类:预测结果是一个分类值,yes or no,0或1,好或坏,输或赢等等,比如预测猛龙队能否获得2019NBA总冠军,预测小明同学今年能否考上大学等等,结果都只有两个。逻辑回归算法是所有机器学习算法中最简单的算法,但
转载
2024-04-20 21:37:31
31阅读
逻辑回归算法类型有监督学习的分类算法【只能做二分类】 逻辑回归算法原理将线性回归的结果输入sigmoid函数中,得出预测为类1的概率( 如果概率为0.2 有20%的可能属于类1,属于类0的概率是80%; 结果是类0 如果概率为0.8 有80%的可能属于类1,属于类0的概率是20%; 结果是类1 ) 线性回归算法方程sigmoid函数公式和图像 逻辑回归的结果是基于线
转载
2023-10-16 22:44:37
115阅读
0.概述线性回归不仅可以做回归问题的处理,也可以通过与阈值的比较转化为分类的处理,但是其假设函数的输出范围没有限制,这样很大的输出被分类为1,较少的数也被分为1,这样就很奇怪。而逻辑回归的假设函数的输出范围是0~1。当数据集中含有误差点时,使用线性回归相应的误差也会很大。逻辑回归其实是分类算法,但是由于历史原因被称为逻辑回归。逻辑回归的假设函数以线性回归的假设函数为基础,通过S形函数进行复合形成的
转载
2024-05-04 11:26:37
36阅读
逻辑回归前言最早接触逻辑回归是在学习吴恩达老师的机器学习课程的时候,那个时候逻辑回归是跟在线性回归后面出现的,当时感觉这应该就是个“hello world”级别的机器学习模型(好像确实是),现在看到《统计学习方法》中的各种推导,才发现自己了解的太少,静下心来看逻辑回归模型和最大熵模型,发现确实蕴藏了很多统计学的基本原理,但是这系列博客重点是实现,所以这里就不进行推导了,书中讲的很详细了。代码地址h
转载
2024-01-05 20:23:10
47阅读
前面一篇介绍了用tensorflow实现线性回归模型预测sklearn内置的波士顿房价,现在这一篇就记一下用逻辑回归分类sklearn提供的乳腺癌数据集,该数据集有569个样本,每个样本有30维,为二分类数据集,212个正样本,357个负样本。
首先,加载数据,并划分训练集和测试集:
# 加载乳腺癌数据集,该数据及596个样本,每个样本有30维,共
转载
2024-04-07 00:04:36
28阅读
逻辑回归的常见面试点总结:(逻辑回归假设数据服从伯努利分布,通过极大化似然函数的方法,运用梯度下降来求解参数,来达到将数据二分类的目的。)逻辑回归和线性回归的联系和区别参考原文:逻辑回归:线性回归可以预测连续值,但是不能解决分类问题,我们需要根据预测的结果判定其属于正类还是负类。所以逻辑回归就是将线性回归的(−∞,+∞)结果,通过sigmoid函数映射到(0,1)之间。线性回归决策函数:hθx=θ
转载
2024-05-20 16:30:32
44阅读
点赞
一、逻辑回归基本概念 1. 什么是逻辑回归 逻辑回归就是这样的一个过程:面对一个回归或者分类问题,建立代价函数,然后通过优化方法迭代求解出最优的模型参数,然后测试验证我们这个求解的模型的好坏。 Logistic回归虽然名字里带“回归”,但是它实际上是一种分类方法,主要用于两分类问题(即输出只有两种,分别代表两个类别) 回归模型中,y是一个定性变量,比如y=0或1,logistic方法主要应
转载
2023-06-21 22:25:17
179阅读
是的,逻辑回归是机器学习算法之一,通常被用于二分类问题。它是一种广义线性模型,可以用于估计因变量是二元的概率。逻辑回归的输出是一个介于0和1之间的概率值,可以用于预测一个新的观测值属于哪个类别。逻辑回归是机器学习算法吗?逻辑回归的基本原理是通过对特征向量的线性组合,然后将这个组合输入到一个sigmoid函数中,从而将线性组合的值转换为概率值。sigmoid函数的输出值介于0和1之间,表示因变量为1
转载
2024-06-12 21:28:20
28阅读