http://fancyerii.github.io/books/depparser/依存句法分析 http://fancyerii.github.io/books/depparser/成分句法分析 http://fancyerii.github.io/books/parser/成分句法分析英语的语法分析很早就有,我们(中国人)现在学习英语非常重要的部分依然是学习语法(Gram
成分分析1简介在用统计分析方法研究这个多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。
前面写的一些统计学习方法都是属于监督学习(supervised learning),这篇主成分分析(principal components analysis,简称 PCA )和下一篇聚类分析(clustering)都是属于非监督学习(unsupervised learning)。之前 ISLR读书笔记十二 中已经提到过主成分这一概念。其主要目的是利用一小部分数据组合,尽可能多地体现这里的
个人笔记,仅用于个人学习与总结 本文目录1. Pytorch的主要组成模块1.1 完成深度学习的必要部分1.2 基本配置1.3 数据读入1.4 模型构建1.4.1 神经网络的构造1.4.2 神经网络中常见的层1.4.3 模型示例1.5 模型初始化1.5.1 torch.nn.init常用方法1.5.2 torch.nn.init使用1.5.3 初始化函数的封装1.6 损失函数1.6.0 基本用法
目录一、主成分分析的原理二、主成分分析步骤1.主成分分析的步骤:2.部分说明(1)球形检验(Bartlett)(2)KMO(Kaiser-Meyer-Olkin)统计量(3)主成分分析的逻辑框图  三、所用到的库 factor_analyzer库 四、案例实战 1.数据集2.导入库 3.读取数据集 4.进行球状检验5.KMO检验
转载 2023-08-06 12:09:42
478阅读
PCA(Principal Component Analysis)是一种常用的数据分析方法。PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维。数据的向量表示及降维问题一般情况下,在数据挖掘和机器学习中,数据被表示为向量。例如某个淘宝店2012年全年的流量及交易情况可以看成一组记录的集合,其中每一天的数据是一条记录,格式如下:(日期, 浏
原创 2021-05-20 23:54:26
1283阅读
PCA算法提供了一种压缩数据的方式。我们也可以将PCA视为学习数据表示的无监督学习算法。这种表示基于上述简单表示的两个标准。PCA学习一种比原始输入维数更低的表示。它也学会了一种元素之间彼此没有线性相关的表示。这是学习表示中元素统计独立标准的第一步。要实现完全独立性,表示学习算法也必须去掉变量间的非线性关系。假设有一个的设计矩阵X,数据的均值为零,。若非如此,通过预处理地步骤使所有样本减去均值...
原创 2021-08-13 09:45:10
220阅读
1. 主成分分析预备知识 1.1 样本均值 给定数据集$D={x_1, x_2, ..., x_n}$, 样本$x_i$是$d$维向量,则样本均值为 \[ \overline{x}=\frac{x_1+x_2+...+x_n}{n}\tag{1} \] 例1 给定一个数据矩阵 \[ D_{3\tim ...
转载 2021-09-25 14:37:00
177阅读
2评论
假设我门得到2维度数据data = [[x1,y1],[x2,y2],...,[xn,yn]]# 1.求x,y的均值mx = m
原创 2022-11-02 09:48:47
99阅读
问题:如果IR在该文件中,我们已经建立-词项矩阵,有两个词条目“learn”和“study”,在传统的向量空间模型。两个独立的感觉。从语义的角度来讲,两者是相似的,并且两者出现频率也类似,是不是能够合成为一个特征呢? 《模型选择和规则化》谈到的特征选择的问题。就是要剔除的特征主要是和类标签无关的特征...
转载 2015-06-17 13:43:00
216阅读
成分分析是一种降维算法,它能将多个指标转换为少数几 个主成分,这些主成分是原始变量的线性组合,且彼此之间 互不相关,其能反映出原始数据的大部分信息。一般来说, 当研究的问题涉及到多变量且变量之间存在很强的相关性时, 我们可考虑使用主成分分析的方法来对数据进行简化。 主成分分析是把原来多个变量划为少 ...
转载 2021-09-10 10:50:00
221阅读
2评论
一、主成分分析是利用降维的方法,在损失很少信息量很少的前提下,把多个指标转换为几个综合指标的多元统计方法。通常把转化的综合指标称为主成分。二、基本原理在对某一事物进行研究时,为了更全面、准确地反应事物的特征及其发展规律人们通常考虑一起有关系的多个指标,也叫变量。三、主成分分析步骤1、根据问题选取初始变量2、根据初始变量特性判断由协方差矩阵求主成分还是由相关阵求主成分3、求协方差矩阵或相关矩阵的特征
        问题:如果在IR中我们建立的文档-词项矩阵中,有两个词项为“learn”和“study”,在传统的向量空间模型中,觉得两者独立。然而从语义的角度来讲,两者是相似的,并且两者出现频率也类似,是不是能够合成为一个特征呢?       《模型选择和规则化》谈到的特征选择的问题,就是要剔除的特征主要是和类标签无关的特征。比方“学生的名字”就和他的“成绩”无关,使用的是互信息的方法。    
转载 2015-02-16 11:10:00
147阅读
成分分析的原理 主成分分析是将众多的变量转换为少数几个不相关的综合变量,同时不影响原来变量反映的信息,实现数学降维。 如何获取综合变量? 通过指标加权来定义和计算综合指标: \[ Y_1 = a_{11} \times X_1+a_{12} \times X_2 + ... +a_{1n} \ti ...
转载 2021-10-16 22:16:00
287阅读
2评论
成分分析(Principal Component Analysis, PCA )是一种利用线性映射来进行数据降维的方法,并去除数据的相关性; 且最大限度保持原始数据的方差信息 线性映射,去相关性,方差保持 线性映射 \[ F = \sum_{i=1}^{p}u_iX_i = u^{T}X \] 相 ...
转载 2021-10-28 11:21:00
251阅读
2评论
一、概念主成分分析的提出:principal component analysis,是将多个指标化为少数几个综合指标的一种统计分析方法,即通过降维技术把多个变量化为少数几个主成分的方法。 基本思想:将原来众多具有一定相关性的指标,重新组合成一组新的相互无关的综合指标来代替原来指标。
原创 2022-01-11 16:47:00
227阅读
本系列所有的代码和数据都可以从陈强老师的个人主页上下载:Python数据程序参考书目:陈强.机器学习及Python应用. 北京:高等教育出版社, 2021.本系列基本不讲数学原理,只从代码角度去让读者们利用最简洁的Python代码实现机器学习方法。无监督学习就是没有y,让算法从特征变量x里面自己寻找特征。本节开始无监督学习的方法,经典统计学的主成分分析,可以将数据进行线性变化从而进行降维,用少数几
ICA是一种用于在统计数据中寻找隐藏的因素或者成分的方法。ICA是一种广泛用于盲缘分离的(BBS)方法,用于揭示随机变量或者信号中隐藏的信息。ICA被用于从混合信号中提取独立的信号信息。ICA在20世纪80年代提出来,但是知道90年代中后期才开始逐渐流行起来。 ICA的起源可以来源于一个鸡尾酒会问题,我们假设三个观测点x1,x2,x3,放在房间里同时检测三个人说话,另三个人的原始信号为s1,s2
       主成分分析(PCA)是一种基于变量协方差矩阵对数据进行压缩降维、去噪的有效方法,PCA的思想是将n维特征映射到k维上(k<n),这k维特征称为主成分,是旧特征的线性组合,这些线性组合最大化样本方差,尽量使新的k个特征互不相关。       主成分分析再说白点就是将多项指标转化为少数几项综合指标,用综
参考url:https://jakevdp.github.io/PythonDataScienceHandbook/05.09-principal-component-analysis.html主成分分析(principal component analysis,PCA),无监督算法之一,PCA是一种非常基础的降维算法,适用于数据可视化、噪音过滤、特征抽取和特征工程等领域。1、主成分分析简介  主
  • 1
  • 2
  • 3
  • 4
  • 5