前段时间在阿里云买了一台服务器,准备部署网站,近期想玩一些深度学习项目,正好拿来用。TensorFlow官网的安装仅提及Ubuntu,但我的ECS操作系统是 CentOS 7.6 64位,搭建Python、TensorFlow、Jupyter开发环境过程中遇到很多问题。这里将具体步骤分享给大家,可以少走很多弯路。第一步 安装anacondaAnaconda在linux依然功能强大,管理工
1. 背景tensorflow是一套可以通过训练数据的计算结果来反馈修改模型参数的一套框架,由谷歌公司于2015年11月开源,可以点击playground来可视化的尝试操作tensorflow,随便试了一下,挺好玩: 使用如下语句进行安装:pip install tensorflowtensorflow近期发布了2.0预览版本,改动极大,在第4部分介绍。TensorFlow再这么完善下去,都可以不
转载 2024-05-14 15:01:47
139阅读
一、TensorFlow基础1、tensorflow简介深度学习,如深度神经网络、卷积神经网络和递归神经网络已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。 深度学习框架TensorFlow、caffe、Torch、Theano、CNTK TensorFlow特点:① 真正的可移植性:引入各种计算设备的支持包括CPU/GPU/TPU
转载 2020-02-08 11:03:00
138阅读
虽然可以通过自己编程实现前向和反向传播过程但是随着神经网络的层数增加会导致编程趋于复杂,为了节省这种工作,可以使用现有深度学习框架。目前的已有的学习框架有很多Tensorflow,caffe,Torch,pytorch,Theano等,使用最多的目前是Tensorflow,本文讲简单介绍下Tensorflow的使用方法。1.预备工作import tensorflow as tf sess = tf
一、Tensorflow框架Tensorflow框架的基本组成:数据模型(Tensor),计算模型(计算图),运行模型(Session)1. 计算图:Tensorflow中的每一个计算都是计算图上的一个节点,而节点之间的边描述了计算之间的依赖关系。系统会自动维护一个默认的计算图,通过tf.get_default_graph()可以获得默认的计算图。可以通过a.graph is tf.ge
前言新手学习可以点击参考Google的教程。开始前,我们先在本地安装好 TensorFlow机器学习框架。 1. 首先我们在本地window下安装好python环境,约定安装3.6版本; 2. 安装Anaconda工具集后,创建名为 tensorflow 的conda 环境:conda create -n tensorflow pip python=3.6; 3. conda切换环境:act
TensorFlow 源码       截止到目前为止,TensorFlow 在 【Github】 的 Contributors 已经接近900人,Fork 30000次。       学习这么庞大的开源项目,首先必须要搞清楚其代码组织形式,我们先来看目录结构:      &nb
目录1 TensorFlow介绍2 TensorFlow的安装3 张量及其操作4 tf.keras介绍5 总结 1 TensorFlow介绍深度学习框架TensorFlow一经发布,就受到了广泛的关注,并在计算机视觉、音频处理、推荐系统和自然语言处理等场景下都被大面积推广使用,接下来我们深入浅出的介绍Tensorflow的相关应用。TensorFlow的依赖视图如下所示:TF托管在github平台
github上有一个名为:deeplearning-models 的项目。居然这么多star,然后我就看了一下内容,真的很赞!迅速Mark,分享给大家~ 在介绍 deeplearning-models 项目之前,很必要介绍一下作者,因为真的太强了。 很难想象一个MLer:Sebastian Raschka,在github上居然有 9.7k Followers,这是 AI 领域 Followers第
作者简介:akshay pai,数据科学工程师,热爱研究机器学习问题。Source Dexter网站创办人。TensorFlow是Google的开源深度学习库,你可以使用这个框架以及Python编程语言,构建大量基于机器学习的应用程序。而且还有很多人把TensorFlow构建的应用程序或者其他框架开源发布到GitHub上。这次跟大家分享一些GitHub上令人惊奇的TensorFlow项目,你可以
转载 2024-03-12 13:43:53
51阅读
import tensorflow as tf #张量的计算图,神经网络的计算过程,只搭建,不运算。 a=tf.constant([1.0,2.0]) b=tf.constant([3.0,4.0]) result=a+b print(result) c=tf.constant([[1.0,2.0]]) d=tf.constant([[3.0],[4.0]]) y=tf.matmul(c,d...
原创 2021-07-19 11:06:14
148阅读
tensorflow IO流程一、队列1、队列与队列管理器(1)队列(2)队列管理器二、文件读取1、文件读取流程2、文件读取API(1)文件队列构造(2)文件阅读器(3)文件内容解码器三、图片处理1、图像基本知识2、图像读取API3、 TFRecords分析、存取(1)TFRecords存储(2)TFRecords读取方法(3)Cart-10数据批处理结果存入tfrecords流程(4)读取tf
转载 2024-03-26 20:58:22
79阅读
文 / Maciej Kula 和 James Chen,Google Brain推荐系统是机器学习的一大主要应用,能够根据用户偏好推送相关内容,比如推荐电影、餐厅、搭配时装首饰或筛选媒体信息流等。Google 过去几年一直在探索新的深度学习技术,力求通过结合多任务学习、强化学习、提取更好的用户表征和构建公平性指标提供更好的推荐。这些努力和其他方面的进展大幅改善了我们的推荐效果。今天,我
 TensorFlow Serving 开源的一年半时间里取得了许多进展和性能提升,包括开箱即用的优化服务和可定制性,多模型服务,标准化模型格式,易于使用的推理API等。本文是研究团队撰写的回顾,并提出接下来创新的方向是Granular batching和分布式模型服务。自从2016年2月 TensorFlow Serving 开源以来,我们做了一些重大改进。现在,让我们再回到这个项目开
# Java与TensorFlow的结合:开启智能应用的新篇章 随着人工智能(AI)和深度学习的快速发展,TensorFlow作为一个强大的开源机器学习框架,逐渐成为开发者实现AI应用的首选工具。虽然TensorFlow最初是为Python设计的,但现在它也支持Java。本文将探讨如何在Java中使用TensorFlow,并通过示例代码展示其基本用法。 ## TensorFlow简介 Ten
原创 9月前
46阅读
 一、处理结构因为TensorFlow是采用数据流图(data flow graphs)来计算, 所以首先我们得创建一个数据流流图, 然后再将我们的数据(数据以张量(tensor)的形式存在)放在数据流图中计算. 节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组, 即张量(tensor). 训练模型时tensor会不断的从数据流图中的一个节
LinkedIn 严重依赖人工智能为其超过 5.75 亿会员提供内容和创造经济机会。随着深度学习技术的迅速发展,人工智能工程师已经开始在 LinkedIn 的关联驱动产品中采用深度神经网络,包括反馈和智能回复。这些用例中的许多都构建在由谷歌编写的深度学习框架 TensorFlow 上。一开始,我们内部的 TensorFlow 用户在小型的、非托管的“裸机”集群上运行框架。但我们很快意识到需要将 T
原创 2021-04-03 10:46:56
899阅读
建立在库博大数据安全分析平台之上的库博软件成分和安全分析工具可以对AI开源框架进行成分发、1,099,906行代码,4312个文件。共找到9个依赖的组件,t...
原创 2022-12-23 18:08:34
144阅读
目录Keras介绍Keras和tensorflow关系Keras介绍Keras 是一个高级的Python 神经网络框架,其文档详。Keras 已经被添加到TensorFlow 中,成为其默认的框架,为TensorFlow 提供更高级的API。如果读者不想了解TensorFlow 的细节,只需要模块化,那么Keras 是一个不错的选择。如果将TensorFlow 比喻为编程界的Java 或...
原创 2021-06-10 17:32:50
217阅读
基础知识:卷积神经网络CNN详解VGG训练的程序:(三)基于Tensorflow设计VGGNet网络训练CIFAR-10数据集1 小序(1) VGG(Visual Geometry Group)是牛津大学工程科学院(Department of Engineering Science, University of Oxford)视觉组和Google DeepMind公司研究员参加2014 ILSVR
  • 1
  • 2
  • 3
  • 4
  • 5