Kmeans算法是十分常用的算法,给定聚的数目N,Kmeans会自动在样本数据中寻找N个质心,从而将样本数据分为N个别。下面简要介绍Kmeans原理,并附上自己写的Kmeans算法实现。一、Kmeans原理  1. 输入:一组数据data,设定需要的类别数目ClusterCnt,设定迭代次数IterCnt,以及迭代截止精度eps      输出:数据da
文本算法介绍分类和都是文本挖掘中常使用的方法,他们的目的都是将相似度高的对象归类,不同点在于分类是采用监督学习,分类算法按照已经定义好的类别来识别一篇文本,而是将若干文本进行相似度比较,最后将相似度高的归为一。在分类算法中,训练集为已经标注好的数据集,但是微博文本具有的大数据特性及不确定性决定了标注数据的难度,因此本文选择算法对大量且随机的微博文本进行处理。大量文本建模后还需要对
上两篇文章分别用朴素贝叶斯算法和KNN算法对newgroup文本进行了分类測试。本文使用Kmeans算法对文本进行。1、文本预处理文本预处理在前面两本文章中已经介绍,此处(略)。2、文本向量化package com.datamine.kmeans; import java.io.*; import java.util.*; import java.util.Map.Entry; /**
转载 2024-10-08 13:03:53
20阅读
1.k均值简介k均值是一种无监督学习方法,当数据量小,数据维度低时,具有简单、快速、方便的优点,但是当数据量较大时,其速度较慢,也容易陷入局部最优。2. 步骤和以前一样,kMeans的原理在网上有很多讲解,所以这里不在赘述,直接给出步骤,而通过伪代码将是一个描述步骤的不错选择:随机初始化k个中心 while 有样本所属的中心发生改变时: for 每个样本i: 初始化所有簇
文章目录一、kMeans是什么?二、算法步骤三、实现代码 一、kMeans是什么?kMeans算法是最常用的算法,该算法的主要作用是将相似的样本自动归到一个类别中。kMeans算法十分简单易懂而且非常有效,但是合理的确定K值和K个初始簇中心点对于效果的好坏有很大的影响。同时,因为每次分簇是我们是依据每个散点到中心点的平均距离来确定的,因此任意选取点总是围绕中心点为一定半径范围内,因此k
算法在实际工作中经常被使用,尤其是在数据规模较大的情况下,会先用kmeans做下,分一下组。吴恩达 机器学习课程 中对kmeans讲的很清楚。K-均值是一个迭代算法,假设我们想要将数据成n个组,其方法为:首先选择个随机的点,称为中心(cluster centroids);对于数据集中的每一个数据,按照距离个中心点的距离,将其与距离最近的中心点关联起来,与同一个中心点关
目录 目录 1 一、研究背景与目的 2 二、实习招聘信息数据的获取与说明 2 三、文本提取技能要求 4 (一)职位描述文本的预处理 4 1.分句 5 2.分词 5 去除停用词指过滤文本中的特殊字符和对文本含义无意义的词语。例如 6 (二)文本预处理效果 6 (三)文本 7 3.NMF 10 (四)方法的比较 11 1.效果 11 四、文本量化技能要求 11 (一)专业技能
# K-Means算法在Java中的实现指南 K-Means是一种简单而有效的算法,广泛应用于数据挖掘和机器学习领域。本文将引导你逐步实现K-Means算法的Java代码,并解释每个步骤的细节。 ## 实现流程概述 以下是实现K-Means算法的基本流程: | 步骤 | 描述 | |---
原创 8月前
156阅读
KMeans算法思想基本方法 算法伪代码:算法时间复杂度:时间复杂度:O(T*n*k*m)空间复杂度:O(n*m)n:元素个数,k:第一步中选取的元素个数,m:每个元素的特征项个数,T:第5步中迭代的次数。算法代码:# 注意,这里采用的是完全随机初始化,这样的效果不是很好。因为可能会存在有病态的初始化结果。 # 正确方法应该是从样本中随机选择k个点作为初始点。算法损失函数:平方误差:
转载 2023-12-13 16:24:50
54阅读
内平方和(within-cluster sum-of-squares)的标准(criterion)。该算法需要指定簇的数量。它可以很好地扩展到大量样本处在同一个空间。..
原创 2022-11-02 09:45:57
77阅读
Kmeans算法1 Kmeans算法的基本原理 K-means算法是最为经典的基于划分的方法,是十大经典数据挖掘算法之一。K-means算法的基本思想是:以空间中k个点为中心进行,对最靠近他们的对象归类。通过迭代的方法,逐次更新各中心的值,直至得到最好的结果。假设要把样本集分为k个类别,算法描述如下:  (1)适当选择k个的初始中心,最初一般为随机选取;  (2)在每次迭
转载 2023-08-12 15:14:24
111阅读
K均值是一种应用广泛的技术,特别是它不依赖于任何对数据所做的假设,比如说,给定一个数据集合及对应的数目,就可以运用K均值方法,通过最小化均方误差,来进行聚类分析。 因此,K均值实际上是一个最优化问题。在一些已知的文献中论述了K均值的一下一些缺点: K均值假设每个变量的分布是球形的;所有的变量具有相同的方差;具有相同的先验概率,要求每个拥有相同数量的观测 以上任一个条件不满足时
转载 2024-05-23 20:36:33
23阅读
Kmeans是一种经典的算法,所谓,是指在没有给出目标的情况下,将样本根据某种关系分为某几类。那在kmeans中,是根据样本点间的距离,将样本n分为k个。K-means实现步骤:1.首先,输入数据N并确定聚个数K。2.初始化中心 :随机选K个初始中心点。 3.计算所有样本N与K个中心点的距离,将其归到距离最近的一簇。4.针对每一簇,计算该簇内所有样本到中心点距离的均值,最为新的中心
转载 2023-06-21 22:09:18
252阅读
1. Kmeans算法原理     1.1 概述         K-means算法是集简单和经典于一身的基于距离的算法         采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。         该算法认为簇是由距离靠
转载 2024-08-09 16:06:41
53阅读
## 1 k-Means算法k-Means算法是一种经典的算法,也称为K均值算法。k-Means的工具原理:假设建立一个坐标系,这个坐标系的横坐标是价格,纵坐标是评论。然后根据每个物品的这两项特征将物品放置在该坐标系中,那么如何将这些物品划分为k个。此时K为自定义。例如,可以定义k为2,既将所有的物品划分为两。首先,随机选择两的中心点AB,这两的称为中心。初始的中心是随机选
机器学习-文本实例-kmeans import os import gensim import jieba from gensim.models.doc2vec import Doc2Vec from sklearn.cluster import KMeans TaggededDocument
原创 2022-06-10 19:24:38
321阅读
K-MEANS算法: k-means 算法接受输入量 k ;然后将n个数据对象划分为 k个以便使得所获得的满足:同一中的对象相似度较高;而不同聚中的对象相似度较小。相似度是利用各中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。 k-means 算法的工作过程说明如下:首先从n个数据对象任意选择 k 个对象作为初始中心;而对于所剩下其它对象,则根据它们与这些
转载 2023-09-04 15:29:47
62阅读
理论Python实现
原创 2022-11-02 09:43:44
191阅读
[算法]K-means优缺点及其改进 K-means小述大家接触的第一个方法,十有八九都是K-means啦。该算法十分容易理解,也很容易实现。其实几乎所有的机器学习和数据挖掘算法都有其优点和缺点。那么K-means的缺点是什么呢? 总结为下: (1)对于离群点和孤立点敏感; (2)k值选择; (3)初始中心的选择; (4)只能发现球状簇。 对于这4点呢的原因,读
转载 2023-07-05 22:36:42
297阅读
Kmeans算法及简单案例Kmeans算法流程选择的个数k.任意产生k个,然后确定聚中心,或者直接生成k个中心。对每个点确定其中心点。再计算其新中心。重复以上步骤直到满足收敛要求。(通常就是确定的中心点不再改变。)Kmeans算法流程案例将下列数据点用K-means方法进行(这里使用欧式距离作为度量,K取值为2) P1~P15这15个数据点的二维坐标图如下:指定P1、P2为初
转载 2023-08-25 16:25:56
167阅读
  • 1
  • 2
  • 3
  • 4
  • 5