CNN卷积神经网络原理详解(下)反向传播前向传播过程反向传播过程输出层向隐藏层的权值更新:隐藏层向输入层的权值更新 反向传播前面讲解了卷积神经网络的网络基本架构。我们在实际运算的时候会发现,随着计算次数的增加,我们的输出结果与我们的预期结果会不断的逼近。这是因为网络中的权重参数在不断的调整,那么参数是如何调整的?这就涉及到一个反向传播的问题。反向传播其实是神经网络的一个基础,下面我通过一个简单的
文章目录目录1.CNN学习2.Keras深度学习框架 目录1.CNN学习 卷积神经网络CNN总结 从神经网络到卷积神经网络(CNN)我们知道神经网络的结构是这样的:那卷积神经网络跟它是什么关系呢?其实卷积神经网络依旧是层级网络,只是层的功能和形式做了变化,可以说是传统神经网络的一个改进。比如下图中就多了许多传统神经网络没有的层次。 卷积神经网络的层级结构   
 一、前言       在图像处理领域,卷积神经网络(Convolution Nerual Network,CNN)凭借其强大的性能取得了广泛的应用。作为一种前馈网络,CNN中各输入之间是相互独立的,每层神经元的信号只能向下一层传播,同一卷积层对不同通道信息的提取是独立的。因此,CNN擅长于提取图像中包含的空间特征,但却不能够有效处理时间序列数据(
HTNE是北航老师提出的针对时序网络(temporal network)嵌入的一个模型,论文发表在2018年KDD上。时序网络,即网络是随时间动态变化的(节点和边会增加或减少)。文章研究了时序网络的embedding问题,旨在建模网络的时序形成模式,从而提升网络embedding的效果。文章通过节点的邻居形成序列(neighborhood formation sequence)建模节点的演变过程,
介绍许多文章关注二维卷积神经网络。它们特别用于图像识别问题。1D CNN在一定程度上被涵盖,例如用于自然语言处理(NLP)。很少有文章解释如何构建一个1D CNN。本文试图弥补这一差距。什么时候应用1D CNN?CNN可以很好地识别数据中的简单模式,然后使用这些模式在更高的层中形成更复杂的模式。当您希望从整体数据集的较短(固定长度)片段中获得有趣的特征,且特征在片段中的位置相关性不高时,1D CN
概览在前面的教程中,我们将一个立方体从模型空间变换到了屏幕空间并进行了绘制。在本教程中,我们将拓展变换的概念,展示一个使用这些变换实现的简单动画。这个教程的输出结果是一个物体绕着另一个物体旋转,用来展示变换以及如何组合这些变换达到所需的效果。后面的教程会建立在这个教程之上介绍新的概念。 源代码(SDK root)\Samples\C++\Direct3D10\Tutorials\Tutorial0
转载 3月前
25阅读
在之前的学习中,没有认真了解卷积神经网络,由于一些原因需要使用CNN来做图像分类,开始学习了卷积神经网络,参考了一些资料并做了这份记录为什么要用卷积神经网络在图像处理中,往往把图像表示为像素的向量,比如一个1000×1000的图像,可以表示为一个1000000的向量。如果使用全连接层来进行处理的话,假设隐含层于输入层数量一样,那么从输入层到隐含层的参数数量为1000000×1000000=10^1
近几年大数据和人工智能技术逐渐成熟,运维领域多年来面临的困境有望得到突破。AIOps就是在这样一个环境下自然孕育而生。IT运维数据天生就有数据量大,维度多,时序等特征,结合人工智能算法,通过训练,就可以让机器自动发现系统异常,快速找到关联的根因,甚至可以根据历史数据提前做出预测。近些年关于AIOps的研究越来越热门,其中,多维时间序列的异常检测和故障诊断是其中非常重要的一个课题方向。本次和大家分享
官方文档介绍https://pytorch.org/docs/master/nn.html#convolution-layerspytorch 中文文档:https://pytorch-cn.readthedocs.io/zh/latest/当然,在pycharm中查找某个函数的具体结构时也可以ctrl+click  CONV1Dhttps://pytorch.org/docs/mast
转载 7月前
107阅读
TSDataset TSDataset 是 PaddleTS 中一个主要的类结构,用于表示绝大多数的时序样本数据,并作为PaddleTS其他算子的输入以及输出对象。TSDataset 包涵两类时序数据:待预测目标:表示希望被预测的时序序列协变量:无需被预测的时间序列,协变量的加入通常用于辅助提高模型预测的效果TSDataset支持的时序样本数据可以分为:单变量数据,只包含单列的预测目标,同时可以包
卷积网络 2基础卷积函数的变体zero-pad如何训练数据类型卷积的高效关于数据类型nextVariants of the basic convolution functionzero-padhow to trainData typesEfficient convolution algorithmsmore information about data typesnext 卷积网络 (2)基础卷
转载 4月前
37阅读
1、神经网络首先了解神经网络,大家移步这俩篇博客,一篇为纯理论,一篇为实战加理论。机器学习之神经网络学习及其模型入门讲解:使用numpy实现简单的神经网络(BP算法)2、卷积神经网络之层级结构cs231n课程里给出了卷积神经网络各个层级结构,如下图 上图中CNN要做的事情是:给定一张图片,是车还是马未知,是什么车也未知,现在需要模型判断这张图片里具体是一个什么东西,总之输出一个结果:如
时序卷积网络(Temporal convolutional network, TCN)的提出是为了是卷积神经网络具备时序特性,与多种RNN结构相对比,发现在多种任务上TCN都能达到甚至超过RNN模型。 TCN主要基于因果卷积和膨胀卷积(Dilated Convolution)因果卷积 从直观上来说,它类似于将卷积运算「劈」去一半,令其只能对过去时间步的输入进行运算。对于 TCN 所使用的一维卷积
TF 2.0 - 时间序列预测入门最近 Google 正式将 TensorFlow 2.0 作为默认 TensorFlow 版本了,作为一名初学者,决定用相对易用的新版的 TensorFlow 来进行实践。在接下来的内容中,我将记录我用 LSTM 和 Beijing PM2.5 Data Set 来进行时间序列预测的过程。因为 ipynb 文件里都包含图片,所以在文章里就不上图了哈。0. 环境Pa
在进行数字电路系统的设计时,时序是否能够满足要求直接影响着电路的功能和性能。本文首先讲解了时序分析中重要的概念,并将这些概念同数字系统的性能联系起来,最后结合FPGA的设计指出时序约束的内容和时序约束中的注意事项。一、时序分析中的重要概念在数字系统中有两个非常重要的概念:建立时间和保持时间,其示意图如图1所示。一个数字系统能否正常工作跟这两个概念密切相关。只有建立时间和保持时间都同时得到满足时,数
高效入门pytorch系列,第三篇
转载 2021-06-24 13:54:07
728阅读
文 |AI_study今天是《高效入门Pytorch》的第三篇文章,上一篇我们讲解到《深度学习中关于张量的阶、轴和形状的解释》。在这篇文章中,我们将看一个实际的例子,它演示了张量中 阶、轴和形状的使用。为此,我们将考虑卷积神经网络的张量输入。不多BB,我们开始搞起吧。卷积神经网络在这个神经网络编程系列中,我们正在努力构建卷积神经网络(CNN),所以让我们看看在CNN中的张量输入。在前两篇文章中,我
原创 2022-07-28 01:18:42
353阅读
繁杂的样本难以抹去你的光芒我只希望我能够一睹你的模样——题记这诗让我憋了半个小时才憋出来……CNN各层通道数的设置CNN和DNN不同,每层不是一维的,而是三维的,有长宽厚三个维度。输入层(可以当做汇合层与下一卷积层连接)的通道数往往是3,分别保存RGB三色(如果是灰度图,通道数可以设为1,保存的颜色可以是RGB中的任意一个,反正它们都相等)。对于通道数为n前层,下一层卷积层的通道数为
论文标题: OMNI-SCALE CNNS: A SIMPLE AND EFFECTIVE KERNEL SIZE CONFIGURATION FOR TIME SERIES CLASSIFICATION 论文链接: https://openreview.net/forum?id=PDYs7Z2XFGv 代码链接: https://github.com/Wensi-Tang/OS-CNN摘要感受野
时序约束方法——输入时序约束一、系统同步输入示例二、源同步输入示例三、UCF源同步DDR边缘对齐示例四、UCF源同步DDR中心对齐示例五、UCF系统同步SDR示例总结   在本节中,我们学习了输入时序约束的方法。其中,偏移输入(OFFSET IN)约束用于指定输入时序要求。那么,我们要对输入进行怎样的约束是由输入时序要求所决定的,而输入时序要求取决于接口的类型(源同步或者系统同步)和数据速率(
  • 1
  • 2
  • 3
  • 4
  • 5