trainLabels = np.repeat(np.arange(10),8)[:,np.newaxis] #训练图像贴标签。TestLabels = np.repeat(np.arange(10),2)[:,np.newaxis]
原创 2024-07-23 12:28:05
52阅读
最近在做个围棋识别的项目,需要识别下面的数字,如下图:我发现现在网上很多代码是良莠不齐,…真是一言难尽,于是记录一下,能够运行成功并识别成功的一个源码。1、训练1.1、训练数据集下载——已转化成csv文件百度网盘:链接:https://pan.baidu.com/s/17_XBmtQK-lSejswmQJ6YtA提取码:jek51.2 训练源码train.pyimport pandas as pdfrom sklearn.decomposition import PCAfrom sk
原创 2021-07-29 11:11:24
2733阅读
1点赞
引言上一篇博客整理了一下SVM分类算法的基本理论问题,它分类的基本思想是利用最大间隔进行分类,处理非线性问题是通过核函数将特征向量映射到高维空间,从而变成线性可分的,但是运算却是在低维空间运行的。考虑到数据中可能存在噪音,还引入了松弛变量。 理论是抽象的,问题是具体的。站在岸上学不会游泳,光看着梨子不可能知道梨子的滋味。本篇博客就是用SVM分类算法解决一个经典的机器学习问题--手写数字识别。体会一
转载 2024-03-28 21:42:58
202阅读
一、简介支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。1 数学部分1.1 二维空间2 算法部分二、源代码function varargout = DigitClassifyUI(varargin)% % DIGITCLASSIFYUI MATLAB code for DigitClassifyU
原创 2022-04-08 09:52:29
152阅读
一、简介支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。1 数学部分1.1 二维空间2 算法部分二、源代码function varargout = DigitClassifyUI(varargin)% % DIGITCLASSIFYUI MATLAB code for DigitClassifyU
原创 2021-11-08 11:09:05
156阅读
一、简介支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。1 数学部分1.1 二维空间2 算法部分二、源代码function varargout = DigitClassifyUI(varargin)% % DIGITCLASSIFYUI MATLAB code for DigitClassifyU
原创 2021-11-08 13:39:05
269阅读
一、简介支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。
原创 2021-07-05 11:04:41
1402阅读
一、简介支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。
原创 2021-07-05 17:22:48
645阅读
SVM数字识别 #include "stdafx.h" #include <fstream> #include "opencv2/opencv.hpp" #include <vector> using namespace std; using namespace cv; #define SHOW_PROCESS 1 #define ON_STUDY 1 class NumT
原创 2013-09-23 10:09:51
866阅读
文章目录​​一、数据集准备​​​​二、训练​​​​2.1 模型训练​​​​2.1 模型预测​​​​三、模型优化​​​​3.1 多特征拼接​​​​3.2 使用多模型融合​​​​附:skl2onnx​​一、数据集准备MNIST数据集:​​点击下载​​ data2image.py —将mnist数据集转成image保存。训练集6W张,测试集1W张import numpy as npimport stru
原创 2022-08-24 21:40:53
3193阅读
2评论
在自己的windows环境下配置好了深度学习的环境,本文主要记录一下用深度学习的环境下实现一个简单的手写数字识别的模型训练和使用。1、在pycharm中配置conda环境: 环境配置好以后,可以开始手写数字识别的代码了2、加载tensorflow和 keras的库import tensorflow as tf from tensorflow.keras import datasets, lay
参考博客:《参考博客一》《参考博客二》《MNIST代码理解》所需环境:已安装opencv环境下载好MNIST数据集pycharm一些库的安装实现效果:                  这是手写的两个字,进行opencv二值化处理后,得到两张28*28像素的图片,即可进
转载 2023-09-06 18:37:17
338阅读
1.案例背景本文是跟着Tensorflow官方文档的第二篇教程–识别手写数字。MNIST是一个简单的计算机视觉数据集,它是由一系列手写数字图片组成的,比如: 在数据集中,每一张图片会有一个标签label,表示该张图片上的数字是什么。比如以上图片所对应的标签是:5,0,4,1对于初学者,为什么开篇就要介绍这个案例呢?举个栗子, 当我们学习写程序的时候,第一句打印的就是“Hello world”。那么
手写数字识别这次,我们使用CNN来实现手写数字识别。 CNN主要的层次:输入层卷积层激励层池化层全连接层CNN(Convolutional neural network),即卷积神经网络。卷积为理解为一个信号与另外一个信号进行叠加,产生新的信号的过程。 在卷积神经网络中,可认为具有固定权重的滑动窗口与原窗口的数据进行对位相乘再相加的过程。 卷积的过程:http://cs231n.github.io
转载 2024-04-25 13:09:52
121阅读
本文将用卷积神经网络模型,对手写数字集minist进行分类识别,用的框架是keras。MNIST是一个手写数字的图片数据集,该数据集来由美国国家标准与技术研究所发起整理,一共统计了来自250个不同的人手写数字图片,其中50%是高中生,50%来自人口普查局的工作人员。该数据集的收集目的是希望通过算法,实现对手写数字识别。训练集一共包含了 60,000 张图像和标签,而测试集一共包含了 10,00
一、MNIST数据集和DBRHD数据集简介 MNIST数据集 MNIST数据集下载链接:http://yann.lecun.com/exdb/minst/ 该数据集包含0-9的手写体图片数据集,并且图片已经归一化为以手写数字为中心的2828规格的图片。MNIST数据集由训练集和测试集组成,训练集由60000个手写体图片及对应标签,测试集有10000个手写体图片及对应标签。 1)MNIST数据集中的
转载 2024-01-15 06:07:07
135阅读
一般而言,MNIST 数据集测试就是机器学习和深度学习当中的"Hello World"工程,几乎是所有的教程都会把它放在最开始的地方.这是因为,这个简单的工程包含了大致的机器学习流程,通过练习这个工程有助于我们加深理解深度学习的大致流程.MNIST 是一个小型的手写数字图片库,它总共有 60000 张图片,其中 50000 张训练图片,10000 张测试图片.每张图片的像素都是 28 * 28 它
1.准备数据手写数字识别的特征集是一组数值为0-9,大小为 28 * 28 矩阵的图片, 标签为与之对应的数字:2.将数据格式化为 npz 文件""" 将图片和标签整理为 npz 文件 """ import numpy as np import os from PIL import Image import json # 读取图片 # 存到 npz 文件中的为 28 *28 的矩阵列表 tr
原创 2023-01-12 16:07:16
86阅读
逻辑回归实现数字手写识别我是用自己写的算法实现数字手写识别,采用的是Mnist的数据集,因为数据过多,所以我训练集取了600张,测试集取了100张提取图片因为mnist的数据集下载的是ubyte格式,我先把他转成jpg格式。 代码如下:def readfile(): # 读取源图片文件 with open('E:\\pycharm\\python-代码\\train-images.idx
  • 1
  • 2
  • 3
  • 4
  • 5