大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」今日 220+/10000在 回归求助 & 送教程这篇文章中,我放出来最近在做的揭榜挂帅的 PPT 初稿,很多读者表示感兴趣,还有小伙伴问啥时候出书,更有同学贴心的给对象要了份PPT(撒。。既视感 hhh)相比上次,我自己对今天的课件更满意,借机做一个新的尝试:同样是请大家帮忙捉
1. RNN(Recurrent Neural Network)时间轴1986年,RNN 模型首次由 David Rumelhart 等人提出,旨在处理序列数据。关键技术循环结构序列处理长短时记忆网络(LSTM)和门控循环单元(GRU)核心原理RNN 通过循环结构让网络记住以前的输入信息,使其能够处理序列数据。每个节点不仅接收当前输入,还接收前一个节点的输出,从而形成记忆能力。创新点RNN 的创新
图像增强方法在数字图像处理中占有重要地位,它能够有效提高图像的视觉效果,增强图像的细节信息,从而在医学、遥感、工业检测等多个领域发挥重要作用1. 空间域增强方法空间域增强方法是通过直接对图像像素进行操作来实现图像增强的技术。以下是几种常见的空间域增强方法:1.1 直方图均衡化直方图均衡化是一种简单且有效的图像增强方法,主要通过调整图像的灰度直方图,使得图像的灰度级分布更加均匀,从而提高图像的对比度
\大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」今日 210+/10000,内含Pandas 是一个强大的数据分析库,广泛应用于科学研究、金融分析、商业智能等领域。它提供了高效的数据结构和数据分析工具,使得处理和分析数据变得更加简单和高效。Pandas 的核心数据结构是 DataFrame,它可以方便地进行数据清洗、变换、合并和聚合
大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」今日 216/10000抱个拳,送个礼神经网络设计与选择参数初始化与优化学习率调整与正则化数据预处理与标准化训练过程与监控特定模型技巧其他训练技巧1. 神经网络设计与选择网络结构选择 多层感知器(MLP)是最基本的神经网络结构,由输入层、若干隐藏层和输出层组成。每一层的神经元与前一层的神
大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」今日 215/10000为模型找到最好的超参数是机器学习实践中最困难的部分之一1. 超参数调优的基本概念机器学习模型中的参数通常分为两类:模型参数和超参数。模型参数是模型通过训练数据自动学习得来的,而超参数则是在训练过程开始前需要人为设置的参数。理解这两者的区别是进行有效模型调优的基础。
大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」参考 论文:://arxiv.org/abs/2101.02118更多内容,见微*公号文章:审稿人:拜托,请把模型时间序列去趋势!!使用 Python 快速上手 LSTM 模型预测时间序列1. 时间序列预测的重要性时间序列预测,这玩意儿在数据分析界可是个香饽饽,尤其在电力、
大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」不要轻易使用 For 循环For 循环,老铁们在编程中经常用到的一个基本结构,特别是在处理列表、字典这类数据结构时。但是,这东西真的是个双刃剑。虽然看起来挺直白,一用就上手,但是,有时候用多了,问题也跟着来了。性能问题首先得说说性能问题。铁子们可能都有感觉,当你的数据量一大起来,用 Fo
高斯过程回归(GPR)是一种非参数化的贝叶斯方法,用于解决回归问题。与传统的线性回归模型不同,GPR 能够通过指定的核函数捕捉复杂的非线性关系,并提供不确定性的估计。在本文中,我们将详细介绍 GPR 算法的定义、核心思想和数学基础,并通过实例展示其在实际应用中的效果。GPR 算法简介GPR 的定义高斯过程回归(Gaussian Process Regression, GPR)是一种基于高斯过程的统
大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」好的,让我们开始这段统计学的江湖之旅,早日实现一“统”江湖大业。1. 什么是平均数1.1 定义平均数,江湖人称“均值”,是一帮数字里的“老大”,它把一伙数字的总和给分了,分给每个数字一样多。就像是帮派里的老大,把抢来的金银财宝平均分给手下的兄弟们。1.2 计算方法要算出平均数,得把一帮数
大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」预警:今天文章的描述可能会让你有点别扭;如感到不适,请及时停止在我行走江湖的行囊中,有两件利器,tableau与matplotlib,它们足以让我应对各种数据可视化的较量。tableau,乃是BI领域的名门正派,其可视化之术,与PowerBI不相上下。matplotlib,则是Pytho
大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」读者参加面试,竟然在 LeNet 这个基础算法上被吊打~LeNet 确实经典,值得好好说道说道更多内容,见微*公号文章:有史以来最详细的卷积神经网络(CNN)及其变体讲解!!!(多图)1. LeNet 的背景和发展LeNet 是由 Yann LeCun 等人在 年提出的一种
\大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」在算法模型构建中,我们经常需要计算样本之间的相似度,通常的做法是计算样本之间的距离。 今天,一键拿下九种距离算法。走你\~一、欧氏距离 (Euclidean Distance)定义与公式欧氏距离是两个点在 n 维空间中直线距离的度量。它是最常见的距离度量方法之一,用于计算两个向量之间的
大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」抱个拳,送个礼在现代自然语言处理(NLP)领域,Transformer 模型的出现带来了革命性的变化。它极大地提升了语言模型的性能和效率,而自注意力机制是其中的核心组件。今个儿我们将通过五个阶段,逐步深入讲解自注意力机制,帮助大侠一窥其原理和应用,成功实现变身(装 X )第一阶段:自注意
大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」线性回归的理论依据是什么?多重共线性是什么,它如何影响线性回归模型?什么是自相关性,自相关性对线性回归有什么影响?什么是异方差性,如何检测和处理异方差性?训练数据与测试数据分布不一致会带来什么问题,如何确保数据分布一致性?1. 线性回归的理论依据是什么?定义和背景线性回归是一种统计方法,
大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」1. 方差方差是统计学中用来度量一组数据分散程度的重要指标。它反映了数据点与其均值之间的偏离程度。在数据分析和机器学习中,方差常用于描述数据集的变异情况1.1 定义与计算方法 方差的计算方法如下:计算数据集的均值(平均值)计算每个数据点与均值的差值将这些差值平方将平方后的差值相加将总和除
\ 大侠幸会,在下全网同名\[算法金] 0 基础转 AI 上岸,多个算法赛 Top \[日更万日,让更多人享受智能乐趣]  构建机器学习模型的关键步骤是检查其性能,这是通过使用验证指标来完成的。 选择正确的验证指标就像选择一副水晶球:它使我们能够以清晰的视野看到模型的性能。 在本指南中,我们将探讨分类和回归的基本指标和有效评估模型的知识。 学习何时使用每个指标、
大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」抱个拳,送个礼在当今的人工智能(AI)领域,Embedding 是一个不可或缺的概念。如果你没有深入理解过 Embedding,那么就无法真正掌握 AI 的精髓。接下来,我们将深入探讨 Embedding 的基本概念。1. Embedding的基本概念1.1 什么是 EmbeddingE
大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」在光谱学领域,数据预处理是不可或缺的一环。本文将基于 NIR soil 近红外光谱数据,运用 Python 语言进行数据处理,并通过图表直观反映预处理带来的变化。(数据集:后台回复 \[ NIR soil ] )常用的光谱数据预处理技术包括:MSC(多元散射校正)SNV(标准正规化
大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」决策树是一种简单直观的机器学习算法,它广泛应用于分类和回归问题中。它的核心思想是将复杂的决策过程分解成一系列简单的决策,通过不断地将数据集分割成更小的子集来进行预测。本文将带你详细了解决策树系列算法的定义、原理、构建方法、剪枝与优化技术,以及它的优缺点。一、决策树1.1 决策树的定义与原
大侠幸会幸会,我是日更万日 算法金;0 基础跨行转算法,国内外多个算法比赛 Top;放弃 BAT Offer,成功上岸 AI 研究院 Leader;<随机森林及其应用领域> 随机森林是一种强大的机器学习算法,其基本原理在于通过集成多个决策树来提高整体性能。决策树是一种流程图结构,通过一系列的决策来达到最终目标。而随机森林则是通过构建许多这样的决策树,每个决策树都在某种程度上是独立的,从
大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」接微*公号文章:10 种顶流聚类算法,附 Python 实现聚类分析概述聚类分析的定义与意义聚类分析(Clustering Analysis)是一种将数据对象分成多个簇(Cluster)的技术,使得同一簇内的对象具有较高的相似性,而不同簇之间的对象具有较大的差异性。这种方法在无监督学
大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」统计学中的回归目标:主要用于解释和推断自变量(independent variables)和因变量(dependent variables)之间的关系。强调模型的解释性,了解各个自变量对因变量的影响。假设:假设数据符合特定统计假设,如正态分布、独立性和同方差性。需要满足严格的模型假设。模
大侠幸会,在下全网同名「算法金」0 基础转 AI 上岸,多个算法赛 Top「日更万日,让更多人享受智能乐趣」开篇引言正则化定义正则化通俗理解正则化类型L1正则化(Lasso回归)L2正则化(Ridge回归)Elastic NetLp正则化Early StoppingDropout数据增强集成方法如何选择合适的正则化方法正则化如何影响模型复杂度正则化参数设置总结在机器学习中,过拟合是一个常见的问题,
大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」时间序列分析是数据科学中一个重要的领域。通过对时间序列数据的分析,我们可以从数据中发现规律、预测未来趋势以及做出决策。无论是股票市场的走势,还是气象数据的变化,都涉及到时间序列分析在进行时间序列分析时,数据中的趋势(Trend)是一个重要的组成部分。趋势可以是上升、下降或者是平稳的。为了
大侠幸会,在下全网同名「算法金」0 基础转 AI 上岸,多个算法赛 Top「日更万日,让更多人享受智能乐趣」接前天 李沐:用随机梯度下降来优化人生!今天把达叔 6 脉神剑给佩奇了,上 吴恩达:机器学习的六个核心算法! ——梯度下降1、 目标梯度下降优化算法的概述,目的在于帮助读者理解不同算法的优缺点。2、 开整梯度下降法在优化神经网络中的应用和普遍性。3、 梯度下降法的变形形式批梯度下降法:使用整
大侠幸会,在下全网同名「算法金」0 基础转 AI 上岸,多个算法赛 Top「日更万日,让更多人享受智能乐趣」t-SNE(t-Distributed Stochastic Neighbor Embedding)是一种用于降维和数据可视化的非线性算法。它被广泛应用于图像处理、文本挖掘和生物信息学等领域,特别擅长处理高维数据。本文旨在详细介绍 t-SNE 算法的基本概念、数学基础、算法步骤、代码示范及其
大侠幸会,在下全网同名「算法金」0 基础转 AI 上岸,多个算法赛 Top「日更万日,让更多人享受智能乐趣」今天我们来聊聊达叔 6 大核心算法之 —— 优化 算法。吴恩达:机器学习的六个核心算法!梯度下降优化算法是机器学习和深度学习中最常用的优化算法之一。它通过不断调整模型参数,使得损失函数的值逐渐减小,从而使模型逐步逼近最优解梯度下降优化算法的优点简单易实现:梯度下降算法的基本原理简单,容易理解
大侠幸会,在下全网同名[算法金] 0 基础转 AI 上岸,多个算法赛 Top [日更万日,让更多人享受智能乐趣]引言:走进智能的世界曾经,人工智能(AI)是科幻小说中的概念,与飞船、外星人并肩而立。然而,随着时间的推移,AI不再仅仅是幻想的产物,它已经成为我们日常生活中不可或缺的一部分。在AI的大潮中,机器学习(ML)和深度学习(DL)是两个核心技术。ML让机器能够通过数据学习如何改进任务执行,而
大侠幸会,在下全网同名[算法金] 0 基础转 AI 上岸,多个算法赛 Top [日更万日,让更多人享受智能乐趣]机器学习和数据科学领域的工作充满挑战和乐趣,在我踏上人工智能探索之路的初期,我对能够参与项目感到无比兴奋。我满怀热情,我急切地想投身于这些项目中。但是,我尝试开展项目,却发现在寻求顺利完成这些项目的途径上碰壁。我注意到,许多刚入门的学习者也面临着相似的挑战,特别是在项目启动初期的方向确定
Copyright © 2005-2024 51CTO.COM 版权所有 京ICP证060544号