数据增强是通过对原始数据进行各种转换和修改来人工生成附加数据的过程,旨在增加机器学习模型中训练数据的大小和多样性。这对于计算机视觉领域尤
Transfer Learning 迁移学习是指机器学习中的一种技术,其中从解决一个问题中获得的知识应用于另一个不同但相关的问题。在迁移学习中,预
假设您为每个示例分配一个唯一 ID,并将每个 ID 映射到其自己的特征。这是因为模型会尝试在所有样本上将损失降低为零,并且永远无法
训练数据是机器学习的基本组成部分,在模型的开发和性能中起着至关重要的作用。它是指用于训练机器学习算法的标记或注释数据集。以下是与训练数据相关的一些关键方面和注意事项。
过拟合是机器学习(ML)中的常见问题,是指模型过于复杂,泛化能力较差的场景。当模型在有限数量的数据上进行训练,并且学习了特定
计算机视觉是人工智能的一个领域,涉及算法和系统的开发,使计算机能够解释、理解和分析来自周围世界的视觉数据。这包括从静态图像到
人工智能是指机器执行通常需要人类智能的任务的能力,例如识别语音、做出决策和理解自然语言。人工智能算法可以使用大量数据进行训练,并可以随着时间的推移提高其性能。
分类是机器学习中的一项基本任务,涉及根据给定输入数据点的特征为其分配类别或标签。换句话说,分类是一种监督学习方法,它允许机将新实例分类为一组预定义的类别。
自然语言处理 (NLP) 是人工智能 (AI) 的一个子领域,处理计算机和人类(自然)语言之间的交互。它涉及使用算法和统计模型使计算
单次检测器 (SSD)、只看一次 (YOLO) 和基于区域的全卷积网络 (R-FCN) 设计只是已创建的各种目标检测架构中的几个。传统方法通常涉
共生矩阵或共生分布(也称为:灰度共生矩阵 GLCM)是在图像上定义为共生像素值(灰度值或颜色)分布的矩阵)在给定的偏有多种应用,特别是在医学图像分析中。
计算机视觉是人工智能的一个分支,它使机器能够解释和分析视觉信息。然而,与任何人造技术一样,计算机视觉系统很容易受到训练数据产生的偏差的影响。计算机
MSE 定义为预测值与真实值之间的平方差的平均值,而 MAE 定义为预测值与真实值之间的绝对差的平均值。MSE 定义为预测值与真
召回率是机器学习中的一个关键参数,因为它评估分类器识别成功案例的能力。它经常与另一个称为精度的指标一起使用,该指标定
精度是机器学习中的一个关键参数,因为它量化了分类器识别成功样本的能力。它有时与另一个称为召回的统计数据相结合,该统计数据被定
全景分割算法将语义分割和实例分割相结合,可以区分对象的一般类及其组成部分或实例。它们可以处理各种对象类,例
交并集 (IOU) 是一种性能指标,用于评估注释、分割和对象检测算法的准确性。它量化数据集中的预测边界框或分段区域与地
Copyright © 2005-2024 51CTO.COM 版权所有 京ICP证060544号