本文主要探讨数学中的阶乘问题。比如求阶乘最后非零位的位数,计算阶乘的值,等等。




题目:http://acm.hdu.edu.cn/showproblem.php?pid=1042




题目:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1059




分析:题意比较简单,都是给定一个数,求阶乘的值。第二题的数比较大。




     首先如果直接相乘肯定是不行的,稍微高级一点的做法就是采用万进位,这样就能过第一道题了。如果要暴


     力,可以将阶乘写成幂的形式(先进行素数筛选)。用Java写了一个,能过这两个题,只不过效率太低。




代码:


import java.math.BigInteger;
import java.util.Arrays;
import java.util.Scanner;

public class Main {
	
	public final static int N = 100005;
	public static int[] p = new int[N];
	public static boolean[] prime = new boolean[N];
	public static int cnt;

	@SuppressWarnings("resource")
	public static void main(String[] args){
		isprime();
		Scanner cin = new Scanner(System.in);
		int n = cin.nextInt();
		BigInteger ans = BigInteger.ONE;
		
		for(int i = 0; i < cnt; i++){
			if(p[i] > n) break;
			ans = ans.multiply(BigInteger.valueOf(p[i]).pow(getFactor(p[i], n)));
		}
		
		StringBuffer str = new StringBuffer("");
		char[] ch = ans.toString().toCharArray();
		for(int i = 0; i < ch.length; i++){
			if(i % 1000 == 0 && i > 0){
				System.out.println(str.toString());
				str.delete(0, str.length());
			}
			str.append(ch[i]);
		}
		if(str.length() > 0){
			System.out.println(str.toString());
		}
	}
	
	public static void isprime(){
		cnt = 0;
		Arrays.fill(prime, true);
		for(int i = 2; i < N; i++){
			if(prime[i]){
				p[cnt++] = i;
				for(int j = i + i; j < N; j += i){
					prime[j] = false;
				}
			}
		}
	}
	
	public static int getFactor(int p, int n){
		int ans = 0;
		while(n != 0){
			ans += n / p;
			n /= p;
		}
		return ans;
	}
}




这样的效率确实太低下,必须想更好的方法。有位大神的代码效率比较高,使用了FFT优化,我对其进行了修

改并加上了一些注释。如下


代码:


#include <iostream>
#include <algorithm>
#include <string.h>
#include <stdio.h>
#include <math.h>

using namespace std;

//FFT模板开始
const double PI = acos(-1.0);

struct Virt
{
    double r, i;

    Virt(double r = 0.0, double i = 0.0)
    {
        this->r = r;
        this->i = i;
    }

    Virt operator + (const Virt &x)
    {
        return Virt(r + x.r, i + x.i);
    }

    Virt operator - (const Virt &x)
    {
        return Virt(r - x.r, i - x.i);
    }

    Virt operator * (const Virt &x)
    {
        return Virt(r * x.r - i * x.i, i * x.r + r * x.i);
    }
};

//雷德算法--倒位序
void Rader(Virt F[], int len)
{
    int j = len >> 1;
    for(int i = 1; i < len - 1; i++)
    {
        if(i < j) swap(F[i], F[j]);
        int k = len >> 1;
        while(j >= k)
        {
            j -= k;
            k >>= 1;
        }
        if(j < k) j += k;
    }
}

//FFT实现
void FFT(Virt F[], int len, int on)
{
    Rader(F, len);
    for(int h = 2; h <= len; h <<= 1) //分治后计算长度为h的DFT
    {
        Virt wn( cos(-on * 2 * PI / h), sin(-on * 2 * PI / h));  //单位复根e^(2*PI/m)用欧拉公式展开
        for(int j = 0; j < len; j += h)
        {
            Virt w(1, 0);            //旋转因子
            for(int k = j; k < j + h / 2; k++)
            {
                Virt u = F[k];
                Virt t = w * F[k + h / 2];
                F[k] = u + t;    //蝴蝶合并操作
                F[k + h / 2] = u - t;
                w = w * wn;      //更新旋转因子
            }
        }
    }
    if(on == -1)
        for(int i = 0; i < len; i++)
            F[i].r /= len;
}

//求卷积
void Conv(Virt a[], Virt b[], int n)
{
    FFT(a, n, 1);
    FFT(b, n, 1);
    for(int i = 0; i < n; i++)
        a[i] = a[i] * b[i];
    FFT(a, n, -1);
}
//FFT模板结束

/***********************/

//代码正文
typedef long long LL;

const int N = 1000005;
const int maxn = 500000;
const int BITS = 1000;
const int LEN = 3;

Virt x1[N], x2[N];

int num[maxn];
int temp[maxn];
int tmp[20][maxn];

char buf[maxn];
int ans[maxn];
char rel[maxn * LEN];
LL bt[6]= {1, 10, 100, 1000, 10000, 100000};

void Solve(int x[], int &L1, int y[], int L2)
{
    int L = 1;
    while(L < 2 * L1 || L < 2 * L2) L <<= 1;
    for(int i = 0; i < L; i++)
    {
        if(i < L1) x1[i].r = x[i];
        else       x1[i].r = 0;
        if(i < L2) x2[i].r = y[i];
        else       x2[i].r = 0;
        x1[i].i = x2[i].i = 0;
    }
    Conv(x1, x2, L);
    LL over = 0;
    L1 = 0;
    for(int i = 0; i < L; i++)
    {
        over += x1[i].r + 0.5;
        x[i] = over % BITS;
        if(over) L1 = i;
        over /= BITS;
    }
    if(over) x[++L1] = over;
    ++L1;
}

//将buf字符串转化为int数组
void CharToInt(char *buf, int x[], int &len)
{
    int bLen = strlen(buf);

    //求出余项的值
    int val = 0;
    for(int i = 0; i < bLen % LEN; i++)
        val = val * 10 + buf[i] - '0';

    len = 0;
    if(val) x[len++] = val;
    for(int i = bLen % LEN; i < bLen; i += LEN)
    {
        val = 0;
        for (int j = 0; j < LEN; j++)
            val = val * 10 + buf[i + j] - '0';
        x[len++] = val;
    }
    //反转字符串
    for(int i = 0; i < len / 2; i++)
        swap(x[i], x[len - 1 - i]);
}

void PutStr(int x[], int n, char *buf, int &len, int BITS_LEN)
{
    int j = 0;
    sprintf(buf, "%d", x[n - 1]);
    while(buf[j]) j++;
    for(int i = n - 2; i >= 0; i--)
    {
        for(int k = 0; k < BITS_LEN; k++)
        {
            buf[j + k] = x[i] / bt[BITS_LEN - 1 - k] + '0';
            x[i] %= bt[BITS_LEN - 1 - k];
        }
        j += BITS_LEN;
    }
    buf[j] = 0;
    len = j;
}

//每1000位一千位地输出
void Print(char *buf, int len)
{
    for(int i = 0; i < len; i += 1000)
    {
        char ch = buf[i + 1000];
        buf[i + 1000] = 0;
        printf("%s\n", buf + i);
        buf[i + 1000] = ch;
    }
}

void ConvertNum(int *num5, int len5, int *num, int &len)
{
    PutStr(num5, len5, buf, len, 5);
    CharToInt(buf, num, len);
}

void Run(int l, int r, int *num, int &m)
{
    memset(temp, 0, (r - l + 1) * sizeof(int));
    memset(num,  0, (r - l + 1) * sizeof(int));
    temp[0] = 1;
    m = 0;
    for(int i = l; i <= r; i++)
    {
        LL top = 0;
        for(int j = 0; j <= m; j++)
        {
            top += (LL)(temp[j]) * i;
            temp[j] = top % 100000;
            top /= 100000;
        }
        if(top)
            temp[++m] = top;
    }
    ConvertNum(temp, m + 1, num, m);
}

//分治法
void Divide(int dept, int ans[], int &n, int l, int r)
{
    if (r - l <= 200)
    {
        Run(l, r, ans, n);
        return ;
    }
    int mid = (l + r) >> 1;
    int rlen;
    Divide(dept + 1, ans, n, l, mid);
    Divide(dept + 1, tmp[dept] + mid * 2 + 2, rlen, mid + 1, r);
    Solve(ans, n, tmp[dept] + mid * 2 + 2, rlen);
}

int main()
{
    int n, m;
    while (scanf("%d", &n) != EOF)
    {
        Divide(1, ans, m, 1, n);
        PutStr(ans, m, rel, n, LEN);
        Print(rel, n);
    }
    return 0;
}