链接

题解:www.cygmasot.com/index.php/2015/08/17/hdu_3970

给定n

 求连续整数[0,n), 中任意选一些数使得选出的数和为n的倍数的方法数
。。。并不会如何递推。。


思路:

然后这是公式:点击打开链接

a(n) = 1/n * sum_{d divides n and d is odd} 2^(n/d) * phi(d).

d最大是n,也就是1e9,要计算1e9的phi,所以容斥来算phi.


#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <stdio.h>  
#include <iostream>  
#include <algorithm>  
#include <sstream>  
#include <stdlib.h>  
#include <string.h>  
#include <limits.h>  
#include <vector>  
#include <string>  
#include <time.h>  
#include <math.h>  
#include <iomanip>  
#include <queue>  
#include <stack>  
#include <set>  
#include <map>  
const int inf = 1e9;
const double eps = 1e-8;
const double pi = acos(-1.0);
template <class T>
inline bool rd(T &ret) {
	char c; int sgn;
	if (c = getchar(), c == EOF) return 0;
	while (c != '-' && (c<'0' || c>'9')) c = getchar();
	sgn = (c == '-') ? -1 : 1;
	ret = (c == '-') ? 0 : (c - '0');
	while (c = getchar(), c >= '0'&&c <= '9') ret = ret * 10 + (c - '0');
	ret *= sgn;
	return 1;
}
template <class T>
inline void pt(T x) {
	if (x < 0) { putchar('-'); x = -x; }
	if (x > 9) pt(x / 10);
	putchar(x % 10 + '0');
}
using namespace std;
const int N = 1e5 + 10;
const int mod = 1e9 + 7;
typedef long long ll;
typedef pair<int, int> pii;
int Pow(int x, int y){//快速幂
	int ans = 1;
	while (y){
		if (y & 1)ans = (ll)ans*x%mod;
		y >>= 1;
		x = (ll)x*x%mod;
	}
	return ans;
}
int prime[N], primenum;//素数表
void PRIME(int Max_Prime){
	primenum = 0;
	prime[primenum++] = 2;
	for (int i = 3; i <= Max_Prime; i += 2)
	for (int j = 0; j<primenum; j++)
	if (i%prime[j] == 0)break;
	else if (prime[j]>sqrt((double)i) || j == primenum - 1)
	{
		prime[primenum++] = i;
		break;
	}
}
void add(int &x, int y){ x += y; if (x >= mod)x -= mod; }//加法
void go(int x, vector<int>&Pri, vector<int>&Num){//分解质因数
	Pri.clear(); Num.clear();
	while (!(x & 1))x >>= 1;
	for (int i = 1; (ll)prime[i] * prime[i] <= x; i++){
		if (x%prime[i])continue;
		Pri.push_back(prime[i]);
		Num.push_back(0);
		while (x%prime[i] == 0)x /= prime[i], Num[Num.size() - 1]++;
	}
	if (x != 1 && (x&1))Pri.push_back(x), Num.push_back(1);
}
vector<int>_pri, _num;
void cal(int id, int mul, int siz, int sor, int &now){//容斥算欧拉函数
	if (id == _pri.size()){
		if (mul == 1)return;
		if (siz & 1)now += sor / mul;
		else now -= sor / mul;
		return;
	}
	cal(id + 1, mul, siz, sor, now);
	cal(id + 1, mul*_pri[id], siz + 1, sor, now);
}
int phi(int x){
	if (x == 1)return 1;
	go(x, _pri, _num);
	int now = 0;
	cal(0, 1, 0, x, now);
	return x - now;
}
int ans, n;
vector<int>pri, num;
void dfs(int id, int d){
	if (id == pri.size())
	{
		add(ans, (ll)Pow(2, n / d) * phi(d) % mod);
		return;
	}
	for (int i = 0; i <= num[id]; i++){
		dfs(id + 1, d);
		d *= pri[id];
	}
}
int main(){
	PRIME(1e5);
	int T; rd(T);
	while (T--){
		rd(n);
		go(n, pri, num);
		ans = 0;
		dfs(0, 1);
		pt((ll)ans*Pow(n, mod - 2) % mod); puts("");
	}
	return 0;
}