生成函数初探

前置知识

1.牛顿二项式定理

( x + y ) n = ∑ k = 0 n ( n k ) x n − k y k (x+y)^n=\sum\limits_{k=0}^n\tbinom{n}{k}x^{n-k}y^k (x+y)n=k=0n(kn)xnkyk

常见的:

( 1 + x ) n = ∑ k = 0 ∞ C n k x k (1+x)^n=\sum\limits_{k=0}^{\infty}C_n^kx^k (1+x)n=k=0Cnkxk

推广到 − n -n n为负数:

( 1 + x ) − n = ∑ k = 0 ∞ C − n k x k = ∑ k = 0 ∞ ( − 1 ) k C n + k − 1 k x k (1+x)^{-n}=\sum\limits_{k=0}^{\infty}C_{-n}^kx^k=\sum\limits_{k=0}^{\infty}(-1)^kC_{n+k-1}^kx^k (1+x)n=k=0Cnkxk=k=0(1)kCn+k1kxk

1 ( 1 − x ) n = ( 1 + ( − x ) ) − n = ∑ k = 0 ∞ ( − 1 ) k C n + k − 1 k ( − x ) k = ∑ k = 0 ∞ C n + k − 1 k x k \dfrac{1}{(1-x)^n}=(1+(-x))^{-n}=\sum\limits_{k=0}^{\infty}(-1)^kC_{n+k-1}^k(-x)^k=\sum\limits_{k=0}^{\infty}C_{n+k-1}^kx^k (1x)n1=(1+(x))n=k=0(1)kCn+k1k(x)k=k=0Cn+k1kxk

1 1 − x = ∑ n = 0 x n \dfrac{1}{1-x}=\sum\limits_{n=0}x^n 1x1=n=0xn

1 1 − x a = ∑ n = 0 ( x a ) n \dfrac{1}{1-x^a}=\sum\limits_{n=0}(x^a)^n 1xa1=n=0(xa)n

1 1 − a x = ∑ n = 0 ( a x ) n \dfrac{1}{1-ax}=\sum\limits_{n=0}(ax)^n 1ax1=n=0(ax)n


2.牛顿广义二项式定理

( x + y ) α = ∑ k = 0 ∞ ( α k ) x α − k y k (x+y)^\alpha=\sum\limits_{k=0}^{\infty}\tbinom{\alpha}{k}x^{\alpha-k}y^k (x+y)α=k=0(kα)xαkyk

( α k ) = α ( α − 1 ) … ( α − k + 1 ) k ! \tbinom{\alpha}{k}=\dfrac{\alpha(\alpha-1)\dots(\alpha-k+1)}{k!} (kα)=k!α(α1)(αk+1)


生成函数


生成函数初探_生成函数
源于Wiki

看懂定义后。


来举个例子:
a = { 1 , 1 , 1 , 1 …   } ⇒ f ( x ) = 1 + x + x 2 + x 3 + … = ∑ n = 0 x n = 1 1 − x a=\{1,1,1,1\dots\}\Rightarrow f(x)=1+x+x^2+x^3+\dots\\=\sum\limits_{n=0}x^n=\dfrac{1} {1-x} a={1,1,1,1}f(x)=1+x+x2+x3+=n=0xn=1x1 (这里可以用等比数列求和公式,或者直接泰勒级数可得)

这里的序列 a i a_i ai, i ( 从 0 开 始 ) i(从0开始) i(0)对应的 x i x^i xi的系数。

即: a = { a 0 , a 1 , a 2 , a 3 …   } , f ( x ) = ∑ n = 0 a n x n a=\{a_0,a_1,a_2,a_3\dots\},f(x)=\sum\limits_{n=0}a_nx^n a={a0,a1,a2,a3},f(x)=n=0anxn

a = { 1 , 1 , 1 , 1 …   } ⏟ n 个 1 ⇒ f ( x ) = 1 + x + x 2 + x 3 + ⋯ + x n − 1 = 1 − x n 1 − x a=\underbrace{\{1,1,1,1\dots\}}_{n个1}\Rightarrow f(x)=1+x+x^2+x^3+\dots+x^{n-1}=\dfrac{1-x^n}{1-x} a=n1 {1,1,1,1}f(x)=1+x+x2+x3++xn1=1x1xn


利用母函数求解 f i b o n a c c i fibonacci fibonacci数列通项公式

a = { 0 , 1 , 1 , 2 , 3 , 5 , 8 …   } ⇒ f ( x ) = x + x 2 + 2 x 3 + 3 x 4 + 5 x 5 … a=\{0,1,1,2,3,5,8\dots\}\Rightarrow f(x)=x+x^2+2x^3+3x^4+5x^5\dots a={0,1,1,2,3,5,8}f(x)=x+x2+2x3+3x4+5x5

f ( x ) − x f ( x ) = ( x + x 2 + 2 x 3 + 3 x 4 …   ) − ( x 2 + x 3 + 2 x 4 + 3 x 5 …   ) = x + ( x 3 + x 4 + 2 x 5 …   ) = x + x 2 f ( x ) ⇒ f ( x ) = x 1 − x − x 2 f(x)-xf(x)\\=(x+x^2+2x^3+3x^4\dots)-(x^2+x^3+2x^4+3x^5\dots)=x+(x^3+x^4+2x^5\dots)=x+x^2f(x)\\ \Rightarrow f(x)=\dfrac{x}{1-x-x^2} f(x)xf(x)=(x+x2+2x3+3x4)(x2+x3+2x4+3x5)=x+(x3+x4+2x5)=x+x2f(x)f(x)=1xx2x

f ( x ) = x ( 1 − 1 − 5 2 x ) ( 1 − 1 + 5 2 x ) f(x)=\dfrac{x}{(1-\dfrac{1-\sqrt{5}}{2}x)(1-\dfrac{1+\sqrt{5}}{2}x)} f(x)=(1215 x)(121+5 x)x
p = ( 1 − 1 − 5 2 x ) , q = ( 1 − 1 + 5 2 x ) , q − p = − 5 x p=(1-\dfrac{1-\sqrt{5}}{2}x),q=(1-\dfrac{1+\sqrt{5}}{2}x),q-p=-\sqrt{5}x p=(1215 x),q=(121+5 x),qp=5 x

f ( x ) = x p q = x ( 1 p − 1 q ) 1 q − p f(x)=\dfrac{x}{pq}=x(\dfrac{1}{p}-\dfrac{1}{q})\dfrac{1}{q-p} f(x)=pqx=x(p1q1)qp1

f ( x ) = − 1 5 ( 1 p − 1 q ) = 1 5 ( 1 q − 1 p ) f(x)=\dfrac{-1}{\sqrt{5}}(\dfrac{1}{p}-\dfrac{1}{q})=\dfrac{1}{\sqrt{5}}(\dfrac{1}{q}-\dfrac{1}{p}) f(x)=5 1(p1q1)=5 1(q1p1)

1 q = 1 1 − 1 + 5 2 x → \dfrac{1}{q}=\dfrac{1}{1-\dfrac{1+\sqrt{5}}{2}x}\rightarrow q1=121+5 x1 对应生成函数 f q ( x ) = ∑ n = 0 ( 1 + 5 2 x ) n f_q(x)=\sum\limits_{n=0} (\dfrac{1+\sqrt{5}}{2}x)^n fq(x)=n=0(21+5 x)n
同理 f p ( x ) = ∑ n = 0 ( 1 − 5 2 x ) n f_p(x)=\sum\limits_{n=0} (\dfrac{1-\sqrt{5}}{2}x)^n fp(x)=n=0(215 x)n

所以 f ( x ) = 1 5 ( f q ( x ) − f p ( x ) ) = ∑ n = 0 x n 1 5 ( ( 1 + 5 2 ) n − ( 1 − 5 2 ) n ) f(x)=\dfrac{1}{\sqrt{5}}(f_q(x)-f_p(x))\\=\sum\limits_{n=0}x^n\dfrac{1}{\sqrt{5}}((\dfrac{1+\sqrt{5}}{2})^n-(\dfrac{1-\sqrt{5}}{2})^n) f(x)=5 1(fq(x)fp(x))=n=0xn5 1((21+5 )n(215 )n)

所以
F n = 1 5 ( ( 1 + 5 2 ) n − ( 1 − 5 2 ) n ) F_n=\dfrac{1}{\sqrt{5}}((\dfrac{1+\sqrt{5}}{2})^n-(\dfrac{1-\sqrt{5}}{2})^n) Fn=5 1((21+5 )n(215 )n)


来个例题:

1.牛客S2巅峰赛11th-B.挑选方案问题
生成函数初探_二次曲面_02
a 1 = { 1 , 1 , 1 …   } = ∑ n = 0 x n = 1 1 − x a_1=\{1,1,1\dots\}=\sum\limits_{n=0}x^n=\dfrac{1}{1-x} a1={1,1,1}=n=0xn=1x1
a 2 = { 1 , 1 } = 1 + x = 1 − x 2 1 − x a_2=\{1,1\}=1+x=\dfrac{1-x^2}{1-x} a2={1,1}=1+x=1x1x2
a 3 = { 1 , 1 , 1 , 1 , 1 } = 1 + x + x 2 + x 3 + x 4 = 1 − x 5 1 − x a_3=\{1,1,1,1,1\}=1+x+x^2+x^3+x^4=\dfrac{1-x^5}{1-x} a3={1,1,1,1,1}=1+x+x2+x3+x4=1x1x5
a 4 = { 1 , 0 , 1 , 0 , 1 …   } = ∑ n = 0 x 2 n = 1 1 − x 2 a_4=\{1,0,1,0,1\dots\}=\sum\limits_{n=0}x^{2n}=\dfrac{1}{1-x^{2}} a4={1,0,1,0,1}=n=0x2n=1x21
a 5 = { 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 1 …   } = ∑ n = 0 x 5 n = 1 1 − x 5 a_5=\{1,0,0,0,0,1,0,0,0,0,1\dots\}=\sum\limits_{n=0}x^{5n}=\dfrac{1}{1-x^5} a5={1,0,0,0,0,1,0,0,0,0,1}=n=0x5n=1x51
卷积得 f ( x ) = 1 1 − x × 1 − x 2 1 − x × 1 − x 5 1 − x × 1 1 − x 2 × 1 1 − x 5 = 1 ( 1 − x ) 3 = ∑ n = 0 C n + 2 n x n f(x)=\dfrac{1}{1-x}\times \dfrac{1-x^2}{1-x}\times \dfrac{1-x^5}{1-x}\times\dfrac{1}{1-x^{2}}\times\dfrac{1}{1-x^5}=\dfrac{1}{(1-x)^3}=\sum\limits_{n=0}C_{n+2}^n x^n f(x)=1x1×1x1x2×1x1x5×1x21×1x51=(1x)31=n=0Cn+2nxn

所以 a n s = C n + 2 n = ( n + 1 ) ( n + 2 ) 2 ans=C_{n+2}^n=\dfrac{(n+1)(n+2)}{2} ans=Cn+2n=2(n+1)(n+2)


待更 … … \dots\dots