1 简介

【禁忌搜索算法】基于禁忌搜索算法求解函数极值问题含Matlab源码_迭代

【禁忌搜索算法】基于禁忌搜索算法求解函数极值问题含Matlab源码_最优解_02

【禁忌搜索算法】基于禁忌搜索算法求解函数极值问题含Matlab源码_邻域_03

【禁忌搜索算法】基于禁忌搜索算法求解函数极值问题含Matlab源码_最优解_04

2 完整代码

%%%%%%%%%%%%%%%%禁忌搜索算法求函数极值问题%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%初始化%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all; %清除所有变量
close all; %清图
clc; %清屏
xu=5; %上界
xl=-5; %下界
L=randi([5 11],1,1); %禁忌长度取5,11之间的随机数
Ca=5; %邻域解个数
Gmax=200; %禁忌算法的最大迭代次数;
w=1; %自适应权重系数
tabu=[]; %禁忌表
x0=rand(1,2)*(xu-xl)+xl; %随机产生初始解
bestsofar.key=x0; %最优解
xnow(1).key=x0; %当前解
%%%%%%%%%%%%%%%%最优解函数值,当前解函数值%%%%%%%%%%%%%%%%%
bestsofar.value=func2(bestsofar.key);
xnow(1).value=func2(xnow(1).key);
g=1;
while g<Gmax
x_near=[]; %邻域解
w=w*0.998;
for i=1:Ca
%%%%%%%%%%%%%%%%%%%%%产生邻域解%%%%%%%%%%%%%%%%%%%%
x_temp=xnow(g).key;
x1=x_temp(1);
x2=x_temp(2);
x_near(i,1)=x1+(2*rand-1)*w*(xu-xl);
%%%%%%%%%%%%%%%%%边界条件处理%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%边界吸收%%%%%%%%%%%%%%%%%%%%%
if x_near(i,1)<xl
x_near(i,1)=xl;
end
if x_near(i,1)>xu
x_near(i,1)=xu;
end
x_near(i,2)=x2+(2*rand-1)*w*(xu-xl);
%%%%%%%%%%%%%%%%%边界条件处理%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%边界吸收%%%%%%%%%%%%%%%%%%%%%
if x_near(i,2)<xl
x_near(i,2)=xl;
end
if x_near(i,2)>xu
x_near(i,2)=xu;
end
%%%%%%%%%%%%%%计算邻域解点的函数值%%%%%%%%%%%%%%%%%%%
fitvalue_near(i)=func2(x_near(i,:));
end
%%%%%%%%%%%%%%%%%%%%最优邻域解为候选解%%%%%%%%%%%%%%%%%%%
temp=find(fitvalue_near==max(fitvalue_near));
candidate(g).key=x_near(temp,:);
candidate(g).value=func2(candidate(g).key);
%%%%%%%%%%%%%%候选解和当前解的评价函数差%%%%%%%%%%%%%%%%%%
delta1=candidate(g).value-xnow(g).value;
%%%%%%%%%%%%%%候选解和目前最优解的评价函数差%%%%%%%%%%%%%%%
delta2=candidate(g).value-bestsofar.value;
%%%%%候选解并没有改进解,把候选解赋给下一次迭代的当前解%%%%%%
if delta1<=0
xnow(g+1).key=candidate(g).key;
xnow(g+1).value=func2(xnow(g).key);
%%%%%%%%%%%%%%%%%%%%%更新禁忌表%%%%%%%%%%%%%%%%%%%%%%%
tabu=[tabu;xnow(g+1).key];
if size(tabu,1)>L
tabu(1,:)=[];
end
g=g+1; %更新禁忌表后,迭代次数自增1
%%%%%%%如果相对于当前解有改进,则应与目前最优解比较%%%%%%%%%%
else
if delta2>0 %候选解比目前最优解优
%%%%%%%%%%把改进解赋给下一次迭代的当前解%%%%%%%%%%%%
xnow(g+1).key=candidate(g).key;
xnow(g+1).value=func2(xnow(g+1).key);
%%%%%%%%%%%%%%%%%%%%更新禁忌表%%%%%%%%%%%%%%%%%%%%%
tabu=[tabu;xnow(g+1).key];
if size(tabu,1)>L
tabu(1,:)=[];
end
%%%%%%%%把改进解赋给下一次迭代的目前最优解%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%包含藐视准则%%%%%%%%%%%%%%%%%%%%%%%
bestsofar.key=candidate(g).key;
bestsofar.value=func2(bestsofar.key);
g=g+1; %更新禁忌表后,迭代次数自增1
else
%%%%%%%%%%%%%%%判断改进解时候在禁忌表里%%%%%%%%%%%%%%%
[M,N]=size(tabu);
r=0;
for m=1:M
if candidate(g).key(1)==tabu(m,1)...
& candidate(g).key(2) == tabu(m,1)
r=1;
end
end
if r==0
%%改进解不在禁忌表里,把改进解赋给下一次迭代的当前解
xnow(g+1).key=candidate(g).key;
xnow(g+1).value=func2(xnow(g+1).key);
%%%%%%%%%%%%%%%%%%%%%更新禁忌表%%%%%%%%%%%%%%%%%%
tabu=[tabu;xnow(g).key];
if size(tabu,1)>L
tabu(1,:)=[];
end
g=g+1; %更新禁忌表后,迭代次数自增1
else
%%%如果改进解在禁忌表里,用当前解重新产生邻域解%%%%%
xnow(g).key=xnow(g).key;
xnow(g).value=func2(xnow(g).key);
end
end
end
trace(g)=func2(bestsofar.key);
end
bestsofar; %最优变量及最优值
figure
plot(trace);
xlabel('迭代次数')
ylabel('目标函数值')
title('搜索过程最优值曲线')


%%%%%%%%%%%%%%%%%%%%%%%%%%%%适配值函数%%%%%%%%%%%%%%%%%%%%%%%%
function y=func2(x)
y=(cos(x(1)^2+x(2)^2)-0.1)/(1+0.3*(x(1)^2+x(2)^2)^2)+3;

3 运行结果

【禁忌搜索算法】基于禁忌搜索算法求解函数极值问题含Matlab源码_最优解_05

4 参考文献

[1]戚峰, 俞晶菁, 黄召杰. 基于禁忌搜索算法求解车间作业调度问题[J]. 兰州交通大学学报, 2011, 30(3):7.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

【禁忌搜索算法】基于禁忌搜索算法求解函数极值问题含Matlab源码_邻域_06