引言
对于优化问题相关算法有如下分类:
禁忌搜索是由局部搜索算法发展而来,爬山法是从通用局部搜索算法改进而来。在介绍禁忌搜索之前先来熟悉下爬山法和局部搜索算法。
局部搜索算法
算法的基本思想
在搜索过程中,始终选择当前点的邻居中与离目标最近者的方向搜索。
算法过程
View Code
爬山法
算法的基本思想
将搜索过程比作爬山过程,在没有任何有关山顶的其他信息的情况下,沿着高度增加的方向爬。如果相邻状态没有比当前值更高,则算法停止,认为当前值即为顶峰。
算法过程
View Code
该算法在单峰的条件下,必能达到山顶。
显而易见爬山法对于复杂情况的求解会遇到以下问题:
(1)局部极值
(2)山脊:造成一系列的局部极值
(3)高原:平坦的局部极值区域——解决办法:继续侧向移动
目前有些改进的爬山法,比如随机爬山法、首选爬山法等等不再细说。
禁忌搜索算法
算法思想
标记已经解得的局部最优解或求解过程,并在进一步的迭代中避开这些局部最优解或求解过程。局部搜索的缺点在于,太过于对某一局部区域以及其邻域的搜索,导致一叶障目。为了找到全局最优解,禁忌搜索就是对于找到的一部分局部最优解,有意识地避开它,从而或得更多的搜索区域
算法过程
对搜索性能有影响的因素
禁忌长度
控制其他变量,单就禁忌长度的选择而言,禁忌长度越短,机器内存占用越少,解禁范围更大(搜索范围上限越大),但很容易造成搜索循环(实际去搜索的范围却很小),过早陷入局部最优。禁忌长度过长又会导致计算时间过长。
特赦规则
通俗定义:对于在禁忌的对象,如果出现以下情况,不论现在对象的禁忌长度如何,均设为0
(1)基于评价值的规则,若出现一个解的目标值好于前面任何一个最佳候选解,可特赦;
(2)基于最小错误的规则,若所有对象都被禁忌,特赦一个评价值最小的解;
(3)基于影响力的规则,可以特赦对目标值影响大的对象。
候选集
候选集的大小,过大增加计算内存和计算时间,过小过早陷入局部最优。候选集的选择一般由邻域中的邻居组成,可以选择所有邻居,也可以选择表现较好的邻居,还可以随机选择几个邻居。
评价函数
评价函数分为直接评价函数和间接评价函数。
直接评价函数:上述例子,均直接使用目标值作为评价函数。
间接评价函数:反映目标函数特性的函数(会比目标函数的计算更为简便,用以减少计算时间等)。
终止规则
禁忌算法是一个启发式算法,我们不可能让搜索过程无穷进行,所以一些直观的终止规则就出现了
(1)确定步数终止,无法保证解的效果,应记录当前最优解;
(2)频率控制原则,当某一个解、目标值或元素序列的频率超过一个给定值时,终止计算;
(3)目标控制原则,如果在一个给定步数内,当前最优值没有变化,可终止计算。
总结
启发式搜索算法蕴含着许多人生哲学,它虽不是数学方法,其思想更类似于人类解决问题的思想和一些人生中总结的道理,值得好好体会。最后用网上一段描述各种搜索算法的例子来作为总结:
为了找出地球上最高的山,一群有志气的兔子们开始想办法。
(1)兔子朝着比现在高的地方跳去。他们找到了不远处的最高山峰。但是这座山不一定是珠穆朗玛峰。这就是爬山法,它不能保证局部最优值就是全局最优值。
(2)兔子喝醉了。他随机地跳了很长时间。这期间,它可能走向高处,也可能踏入平地。但是,他渐渐清醒了并朝他踏过的最高方向跳去。这就是模拟退火。
(3)兔子们知道一个兔的力量是渺小的。他们互相转告着,哪里的山已经找过,并且找过的每一座山他们都留下一只兔子做记号。他们制定了下一步去哪里寻找的策略。这就是禁忌搜索。
(4)兔子们吃了失忆药片,并被发射到太空,然后随机落到了地球上的某些地方。他们不知道自己的使命是什么。但是,如果你过几年就杀死一部分海拔低的兔子,多产的兔子们自己就会找到珠穆朗玛峰。这就是遗传算法。
参考资料
1.爬山法 。
2.局部搜索案例与求解方法。
3.《群体智能优化算法及其应用》雷秀娟 著。