大整数+快速幂
复杂度\(O(500*500*log(p))\)
其中,位数的计算方法:
由于\(2^p\)最低位不会是0,所以\(2^p-1\)和\(2^p\)有同样的位数,由于\(10^x\)的位数为\(x + 1\),所以令\(2^p=10^x\)有\(x = \log_{10}^{2^p}=p*\log_{10}^{2}\),所以位数为\(p*\log_{10}^{2} + 1\)
#include<iostream>
#include<cstring>
#include<cmath>
using namespace std;
const int N = 500;
int a[N];
int ans[N];
int backup[N];
int p;
void mul(int *a, int *b){
memset(backup, 0, sizeof backup);
for(int i = 0; i < N; i ++)
for(int j = 0; j < N; j ++){
if(i + j >= N) continue;
backup[i + j] += a[i] * b[j];
}
int t = 0;
for(int i = 0; i < N; i ++){
backup[i] += t;
t = backup[i] / 10;
backup[i] %= 10;
}
memcpy(a, backup, sizeof backup);
}
void ksm(int e){
a[0] = 2, ans[0] = 1;
while(e){
if(e & 1) mul(ans, a);
mul(a, a);
e >>= 1;
}
}
int main(){
cin >> p;
ksm(p);
ans[0] -= 1;
if(ans[0] < 0){
ans[0] += 10;
for(int i = 1; i < 500; i ++)
if(ans[i] == 0) ans[i] = 9;
else{
ans[i] --;
break;
}
}
cout << int(log10(2) * p + 1) << endl;
for(int i = N - 1, k = 1; i >= 0; i --, k ++) cout << ans[i] << (k % 50 ? "" : "\n");
return 0;
}