Python 代码实现高性能异构分布式数学符号解析系统
任务调度和管理模块
import multiprocessing
from mpi4py import MPI
class TaskScheduler:
def __init__(self):
self.comm = MPI.COMM_WORLD
self.rank = self.comm.Get_rank()
self.size = self.comm.Get_size()
def distribute_tasks(self, tasks):
if self.rank == 0:
for i in range(1, self.size):
self.comm.send(tasks[i-1::self.size-1], dest=i, tag=11)
else:
tasks = self.comm.recv(source=0, tag=11)
self.process_tasks(tasks)
def process_tasks(self, tasks):
results = [self.process_task(task) for task in tasks]
self.comm.send(results, dest=0, tag=22)
def process_task(self, task):
# Placeholder for actual task processing
return f"Processed {task}"
def collect_results(self):
if self.rank == 0:
results = []
for i in range(1, self.size):
results.extend(self.comm.recv(source=i, tag=22))
return results
def main():
scheduler = TaskScheduler()
if scheduler.rank == 0:
tasks = ["Task1", "Task2", "Task3", "Task4"]
scheduler.distribute_tasks(tasks)
results = scheduler.collect_results()
print(f"Final Results: {results}")
else:
scheduler.distribute_tasks(None)
if __name__ == "__main__":
main()
符号解析引擎模块
import sympy as sp
class SymbolicParser:
def __init__(self):
pass
def parse_expression(self, expression_str):
return sp.sympify(expression_str)
def differentiate(self, expression, var):
return sp.diff(expression, var)
def integrate(self, expression, var):
return sp.integrate(expression, var)
def simplify(self, expression):
return sp.simplify(expression)
高性能计算优化模块
import numpy as np
from numba import jit
@jit(nopython=True)
def high_performance_function(data):
return np.sin(data) + np.cos(data)
class HPCOptimizer:
def __init__(self):
pass
def optimize(self, data):
return high_performance_function(data)
系统通信模块
from mpi4py import MPI
class CommunicationManager:
def __init__(self):
self.comm = MPI.COMM_WORLD
self.rank = self.comm.Get_rank()
self.size = self.comm.Get_size()
def send_data(self, data, dest, tag=0):
self.comm.send(data, dest=dest, tag=tag)
def receive_data(self, source, tag=0):
return self.comm.recv(source=source, tag=tag)
数据存储模块
import sqlite3
class DataStorage:
def __init__(self, db_name="symbolic_data.db"):
self.conn = sqlite3.connect(db_name)
self.create_table()
def create_table(self):
with self.conn:
self.conn.execute('''CREATE TABLE IF NOT EXISTS RESULTS
(ID INTEGER PRIMARY KEY AUTOINCREMENT,
EXPRESSION TEXT NOT NULL,
RESULT TEXT NOT NULL);''')
def store_result(self, expression, result):
with self.conn:
self.conn.execute("INSERT INTO RESULTS (EXPRESSION, RESULT) VALUES (?, ?)", (expression, result))
def fetch_results(self):
with self.conn:
cursor = self.conn.execute("SELECT ID, EXPRESSION, RESULT from RESULTS")
return cursor.fetchall()
集成运行
结合上述模块,创建一个集成的系统:
def run_distributed_symbolic_computation():
scheduler = TaskScheduler()
parser = SymbolicParser()
optimizer = HPCOptimizer()
comm_manager = CommunicationManager()
storage = DataStorage()
if scheduler.rank == 0:
tasks = ["sin(x) + cos(x)", "diff(sin(x), x)", "integrate(x**2, x)"]
scheduler.distribute_tasks(tasks)
results = scheduler.collect_results()
for expression, result in results:
storage.store_result(expression, result)
print(storage.fetch_results())
else:
scheduler.distribute_tasks(None)
if __name__ == "__main__":
run_distributed_symbolic_computation()
该系统包括任务调度、符号解析、高性能优化、系统通信和数据存储,实现了一个高性能异构分布式数学符号解析系统的基本功能。可以根据具体需求进一步优化和扩展。
C++ 代码实现高性能异构分布式数学符号解析系统
任务调度和管理模块
#include <mpi.h>
#include <iostream>
#include <vector>
#include <string>
class TaskScheduler {
public:
TaskScheduler() {
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
}
void distributeTasks(const std::vector<std::string>& tasks) {
if (rank == 0) {
int num_tasks = tasks.size();
for (int i = 1; i < size; ++i) {
int task_start = (i - 1) * (num_tasks / (size - 1));
int task_end = (i < size - 1) ? i * (num_tasks / (size - 1)) : num_tasks;
std::vector<std::string> sub_tasks(tasks.begin() + task_start, tasks.begin() + task_end);
MPI_Send(sub_tasks.data(), sub_tasks.size(), MPI_CHAR, i, 0, MPI_COMM_WORLD);
}
} else {
MPI_Status status;
MPI_Probe(0, 0, MPI_COMM_WORLD, &status);
int num_tasks;
MPI_Get_count(&status, MPI_CHAR, &num_tasks);
std::vector<char> buffer(num_tasks);
MPI_Recv(buffer.data(), num_tasks, MPI_CHAR, 0, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
std::vector<std::string> tasks(buffer.begin(), buffer.end());
processTasks(tasks);
}
}
void processTasks(const std::vector<std::string>& tasks) {
std::vector<std::string> results;
for (const auto& task : tasks) {
results.push_back(processTask(task));
}
MPI_Send(results.data(), results.size(), MPI_CHAR, 0, 1, MPI_COMM_WORLD);
}
std::string processTask(const std::string& task) {
// Placeholder for actual task processing
return "Processed " + task;
}
void collectResults() {
if (rank == 0) {
std::vector<std::string> results;
for (int i = 1; i < size; ++i) {
MPI_Status status;
MPI_Probe(i, 1, MPI_COMM_WORLD, &status);
int num_results;
MPI_Get_count(&status, MPI_CHAR, &num_results);
std::vector<char> buffer(num_results);
MPI_Recv(buffer.data(), num_results, MPI_CHAR, i, 1, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
results.insert(results.end(), buffer.begin(), buffer.end());
}
for (const auto& result : results) {
std::cout << result << std::endl;
}
}
}
private:
int rank, size;
};
int main(int argc, char** argv) {
MPI_Init(&argc, &argv);
TaskScheduler scheduler;
if (scheduler.rank == 0) {
std::vector<std::string> tasks = {"Task1", "Task2", "Task3", "Task4"};
scheduler.distributeTasks(tasks);
scheduler.collectResults();
} else {
scheduler.distributeTasks({});
}
MPI_Finalize();
return 0;
}
符号解析引擎模块
#include <symengine/expression.h>
#include <symengine/derivative.h>
#include <symengine/integrate.h>
#include <symengine/simplify.h>
class SymbolicParser {
public:
SymbolicParser() {}
SymEngine::Expression parseExpression(const std::string& expression_str) {
return SymEngine::parse(expression_str);
}
SymEngine::Expression differentiate(const SymEngine::Expression& expression, const SymEngine::RCP<const SymEngine::Symbol>& var) {
return SymEngine::diff(expression, var);
}
SymEngine::Expression integrate(const SymEngine::Expression& expression, const SymEngine::RCP<const SymEngine::Symbol>& var) {
return SymEngine::integrate(expression, var);
}
SymEngine::Expression simplify(const SymEngine::Expression& expression) {
return SymEngine::simplify(expression);
}
};
高性能计算优化模块
#include <cmath>
#include <vector>
#include <iostream>
class HPCOptimizer {
public:
HPCOptimizer() {}
std::vector<double> optimize(const std::vector<double>& data) {
std::vector<double> result(data.size());
for (size_t i = 0; i < data.size(); ++i) {
result[i] = std::sin(data[i]) + std::cos(data[i]);
}
return result;
}
};
系统通信模块
#include <mpi.h>
class CommunicationManager {
public:
CommunicationManager() {
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
}
void sendData(const std::vector<char>& data, int dest, int tag = 0) {
MPI_Send(data.data(), data.size(), MPI_CHAR, dest, tag, MPI_COMM_WORLD);
}
std::vector<char> receiveData(int source, int tag = 0) {
MPI_Status status;
MPI_Probe(source, tag, MPI_COMM_WORLD, &status);
int count;
MPI_Get_count(&status, MPI_CHAR, &count);
std::vector<char> buffer(count);
MPI_Recv(buffer.data(), count, MPI_CHAR, source, tag, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
return buffer;
}
private:
int rank, size;
};
数据存储模块
#include <sqlite3.h>
#include <string>
#include <iostream>
class DataStorage {
public:
DataStorage(const std::string& db_name = "symbolic_data.db") {
sqlite3_open(db_name.c_str(), &db);
createTable();
}
~DataStorage() {
sqlite3_close(db);
}
void storeResult(const std::string& expression, const std::string& result) {
std::string sql = "INSERT INTO RESULTS (EXPRESSION, RESULT) VALUES ('" + expression + "', '" + result + "');";
char* errmsg;
sqlite3_exec(db, sql.c_str(), nullptr, nullptr, &errmsg);
if (errmsg) {
std::cerr << "Error: " << errmsg << std::endl;
sqlite3_free(errmsg);
}
}
void fetchResults() {
std::string sql = "SELECT * FROM RESULTS;";
char* errmsg;
sqlite3_exec(db, sql.c_str(), callback, nullptr, &errmsg);
if (errmsg) {
std::cerr << "Error: " << errmsg << std::endl;
sqlite3_free(errmsg);
}
}
private:
sqlite3* db;
void createTable() {
std::string sql = "CREATE TABLE IF NOT EXISTS RESULTS (ID INTEGER PRIMARY KEY AUTOINCREMENT, EXPRESSION TEXT NOT NULL, RESULT TEXT NOT NULL);";
char* errmsg;
sqlite3_exec(db, sql.c_str(), nullptr, nullptr, &errmsg);
if (errmsg) {
std::cerr << "Error: " << errmsg << std::endl;
sqlite3_free(errmsg);
}
}
static int callback(void* NotUsed, int argc, char** argv, char** azColName) {
for (int i = 0; i < argc; ++i) {
std::cout << azColName[i] << ": " << argv[i] << std::endl;
}
std::cout << std::endl;
return 0;
}
};
集成与运行
结合上述模块,创建一个集成的系统:
int main(int argc, char** argv) {
MPI_Init(&argc, &argv);
TaskScheduler scheduler;
SymbolicParser parser;
HPCOptimizer optimizer;
CommunicationManager comm_manager;
DataStorage storage;
if (scheduler.rank == 0) {
std::vector<std::string> tasks = {"sin(x) + cos(x)", "diff(sin(x), x)", "integrate(x^2, x)"};
scheduler.distributeTasks(tasks);
scheduler.collectResults();
} else {
scheduler.distributeTasks({});
}
MPI_Finalize();
return 0;
}
该系统包括任务调度、符号解析、高性能优化、系统通信和数据存储,实现了一个高性能异构分布式数学符号解析系统的基本功能。可以根据具体需求进一步优化和扩展。